

Leading Thermal Analysis

Polymer Crystallization Behavior – Easy to Understand by Means of the Kinetics Neo Software

NETZSCH Webinar Elena Moukhina 02/23/2022

- 1. Target of kinetic crystallization analysis Brief overview of the problems solving by crystallization kinetics
- 2. Isothermal crystallization

Measurements, Analysis methods, selection of analysis method

- 3. Non-isothermal crystallization (cooling over melting range) Measurements, Analysis methods, selection of analysis method
- 4. Advantages and Limitation of different models for simulations

1. Target of thermokinetic crystallization analysis

Brief overview of the problems solving by crystallization kinetics

Purposes of kinetic analysis

 $A \rightarrow B$

reactant product (melt) (crystal)

Academic

Crystallization mechanism is the **subject** of study

- Find and describe the kinetic mechanism of crystallization

Industrial

Crystallization mechanism is **unknown** or **not important**

- **Predict** crystallization rate and degree of crystallization for given temperature program

- **Optimize** industrial processes: decrease production time and costs and improve the quality of product

Measurements for kinetic analysis: Differential scanning calorimetry

Differential scanning calorimetry: heat flow is measured during temperature change

Polymer for Heating and Cooling

DSC: Conversion is the ratio of the partial enthalpy change at given time point to the total enthalpy change at the final time point

Crystallization rate

Steps to solve Kinetic Tasks in Kinetics Neo

2. Isothermal crystallization Measurements, Analysis methods

K Isothermal crystallization PA12 at 164°C

NETZSCH

Isothermal crystallization PA12

Kinetics Neo: kinetic methods for isothermal crystallization (Arrhenius approach)

Arrhenius approach Like for chemical reactions

Arrhenius:
$$K(T) = exp\left[\frac{-E}{RT}\right]$$

Positive activation energy: chemical reactions **go faster** with increasing of the temperature

Negative activation energy (apparent value): crystallization goes slower with temperature increase

This approach may be applied only at the temperatures close to melting temperature Tm and below it

Isothermal crystallization: Arrhenius approach

Apparent activation energy is negative. Here E ≈ -400kJ/mol

Comparison of different results and selection the appropriate one

Simulation

And for model based (Avrami and Sestak-Berggren)

We recommend to use model based Avrami mehod

Predictions with Avrami model

NETZSCH

Isothermal crystallization: LDPE and PP

NETZSCH

Advantage: very simple and fast, mathematics of chemical kinetics can be used.

Disadvantages:

- 1. Arrhenius approach has no physical background. Activation energy is just the apparent value.
- 2. Does not take into account diffusion near glass transition temperature
- 3. Enables only for very small temperature range near melting point. Produces incorrect predictions outside of this range.

Conclusion: this approach is very simplified, and has very limited working temperature range

Isothermal Crystallization: Arrhenius approach

3. Non-Isothermal crystallization (cooling over melting range)

Measurements; Analysis methods

Nakamura equation,

Hoffman-Lauritzen theory

Sestak-Berggren crystallization

Crystallization for Polyethylene Terephthalate (PET)

Fig. 1. Crystallization curves for polyethylene terephthalate (PET) measured at cooling rates from 1 to 10 K/min

Kinetics Neo: kinetic methods for non-isothermal crystallization

Arrhenius approach does not work

Arrhenius approach: bad fit for both model free and model based

Methods working well for isothermal conditions, can not work for cooling conditions for wide temperature range

Reason: K(T) has non-Arrhenius dependence

Polymer: Heating and Cooling

Crystallization kinetics:

non-Arrhenius approach: Nakamura und Hoffman-Lauritzen

U*	activation energy of segmental jump in polymers,
	this parameter has universal value 6.3kJ/mol
К _G	kinetic parameter for nucleation
∆T=Tm-T	undercooling from the equilibrium <i>melting point Tm</i>
T _∞ =Tg-30	temperature at which crystallization transport is finished,
-	this temperature is 30K below the <i>glass transition temperature Tg</i> .
f=2T/(T+ <mark>Tm</mark>)	correction factor

This method defined for total temperature range between T_{∞} and $T_{melting}$

Hoffman-Lauritzen Theory

Crystallization Prediction for Polyethylene Terephthalate (PET)

One can observe that at temperatures of 110°C to 120°C, no crystallization occurs and the bottles remain in the glassy state and transparent. If the production temperature is too high – e.g., 140°C – then crystallization starts earlier, and the bottles get turbid.

PET: stretch blow molding

PET: Comparison with experiment for complex temperature program

Isothermal Lifetime: predictions for 20%, 50% and 80% crystallization

Crystallisation of PBT during cooling

PBT

Tg= 40-60°C, Tm=220-230°C

Crystallization model SBC with Sestak-Berggren reaction type

Nathanael Guigo, Jesper van Berkel, Ed de Jong, Nicolas Sbirrazzuoli, Thermochimica Acta 650 (2017) 66-75

Predictions: Signal

Predictions: Conversion

cooling

Crystallization is **not complete** for fast cooling because of diffusion near **glass transition** Polymer is partially **amorphous**

4. Predictions, Simulations, Advantages and Limitation of different

Advantages and Limitation of different models for simulations

Crystallization kinetics

Polymer: Heating and Cooling

Model based reaction type:An: Avrami+ ArrheniusSB: Sestak Berggren + ArrheniusValid: isothermal crystallization,small temperature rangeNakamura: Avrami+ Hoffman-LauritzenSBC: Sestak-Berggren+ Hoffman-LauritzenValid: both isothermal and cooling crystallizationcomplete temperature range between T∞ and Tm

Model free:

ASTM2070 Friedman Numerical Optimization

Valid: isothermal crystallization, small temperature range

Unique: Kinetics Analysis must fulfils ICTAC kinetics recommendations

International Confederation for Thermal Analysis and Calorimetry

- Model free analysis
- Multi-step model-fitting (model based)
- Diffusion control for curing
- Crystallization kinetics
- Kamal model for curing
- Deconvolution analysis (sum of peaks)

Users Guide, Training examples,

Webinars: Thermokinetics (pdf and video):

- Advantages and disadvantages of different kinetics approaches.
- Unique and powerful features of NETZSCH Kinetics Neo software

Trial Version 30 days

New Prediction of Viscosity

We have a new feature in version 2.5: prediction of viscosity values of signal. For this purpose we have added a new scale for the Y axis: "Absolute Raw":

KINETICS NEO is used to analyze kinetics of temperature dependent chemical processes.

Analysis

- one mathematical kinetic description for several measurements
- different approaches: model free (11 methods) and model based (unlimited number of models)
- model based: individual reaction steps, concentrations, kinetic triplet for each step, reaction mechanism
- standard reaction types (n-th order, Autocatalysis, diffusion, Avrami nucleation)
- unique reaction types (Kamal-Sourour, diffusion control, Nakamura nucleation, Hoffman-Lauritzen theory)
- Standard data types like TG or DSC
- Unique data types (Dilatometry, Rheometry, DEA)

Predictions and optimizations

- optimization of industrial chemical processes like debinding, curing, sintering
- standard predictions (isothermal, heating, multi-step, user-defined, TD24, climatic for 100 weather stations)
- unique predictions of individual peaks, concentrations, Tg, TTT diagram, temperature presets like fire presets)
- prediction of viscosity or ion viscosity for new temperature profile
- Optimization of temperature profile for constant or predefined conversion rate