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Review Example Study: Thermal behavior and pyrolysis kinetics of olive
stone residue



Pyrolysis
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Pyrolysis is the thermal Decomposition reaction of organic compounds in an inert atmosphere.

During pyrolysis, solid, liquid or gaseous products can be generated. If gases are released from
the sample during pyrolysis, the changes in mass can be detected by TGA (thermogravimetry).

o

m Materials for pyrolysis

Biomass
Plastics
Rubber

-

B Thermogravimetric Analysis (TGA)

B Stages of Decomposition
(Pyrolysis)

—

'm Kinetics Analysis |

Products from Pyrolysis
Gases

Liquids

Solid Residue (Charcoal)



https://analyzing-testing.netzsch.com/en/services/contract-testing/methods/thermogravimetric-analysis

Current Challenges in the Industrial Applications of Pyrolysis Kinetics “ETZS:H
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« The poor choices of the kinetic methods and experimental conditions

 kinetic complexities of multi-step pyrolysis processes



Chemical Kinetics Definition “ETZS:H
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Physical Kinetics is the study of the dependents of a chemical
Chemistry reaction rate on time and temperature.

ThermoDynamics

Heat effect;

direction of reaction
UHSAGuUTEVn.

Chemical Kinetics

Thermal analysis
Reaction rate DSC, TG, ARC, DIL...

Thermal Analysis
Kinetics
atT




Dependence of reaction rate on temperature: Arrhenius equation “ETZS:H
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General equation da
CI — = k(T) . f (a) onrgs] transition state
dt
Ea
Arrhenius dependence K(T) = A - exp —Ea A
RT \
reaction pathwa;
Arrhenius equation da 4 —Ea (@) A
—=A-exp|—= | f(«
dt P\"RT

A: pre-exponential factor [1/s].

Ea: activation energy [kJ/mol]

R: gas constant 8.31 [J/(gK)]

T. absolute temperature [K]  T[K]=T[°C]+273.15



Measurements for kinetic analysis: Thermogravimetry NETZSCH
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B Mass sample 5-10 mg

m Atleast 3 measurements at different heating rates with R2 value greater than 0.995
B Example: 0.25,0.5, 1, 2, 5, 10, 20 K/min
u

Reproducibility
TG 309 Libra Classic |
A Mass

— fast heating

vl

slow heating

Temperature

Thermogravimetry: mass change is measured during heating



Conversion a(t) for TGA data “ETZS:H
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TG J[mg 1conversion
&
0—/
TG 309 Libra Classic |

time

Am(t)
(t) =

A7ntotal

A B Cy —>_)1;0c

a:0..1 g

* a(t) : Conversion is the ratio of the partial mass loss at given time point to the total mass loss at the final time point
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Kinetics Neo Software “ETZS:H
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Kinetics Neo is a software tool for the kinetic analysis and simulation of thermoanalytical data.

Fitting Experimental Data by using Mathematical models: Mathematical models enable the fitting of
experimental data to theoretical equations, which helps in determining kinetic parameters like Activation
energy, Pre-exponential factor, f(a) and Coefficient of determination R2,

Prediction

Of user defined
temperature profile

Data type Kinetic Analysis

DSC/DTA, TGADIL,
DEA. ARC, Rheology MOEEERS = OROcE!

and DMA.




Approaches: model free and model based “E'lzsc"
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Model free A-—>B Model based A->B->C— ..

a — degree of conversion a — concentration of A
b — concentration of B
c — concentration of C

da —E, () d(a—->b) —Ep

E=A(a) - f(a) - exp <#> —ar A - fi(a.b) - exp BT
d(b - C) _ _EAZ

Unknown: Ea(a) and A(a) dt = 4z fa(b.c) - exp < RT )

A(a) can be found only with assumption of f(a)

The number of unknown kinetic triplets equals the number of the steps

Assumptions: _
Assumptions:

=

Only one kinetic equation
Ea and A depend on a
3. Reaction rate at the same conversion is only a function of

N

1. Reaction consists of several individual reaction steps with
own equations.

temperature
4. Total effect (total mass loss or total peak area) must be the 2. All kinetic parameters which are the constant values
same for all curves
5. Changes of mechanism should be at the same conversion 3. The total signal is the sum of the signals of the single reaction steps

value having own weight



Kinetic Analysis Methods in Kinetics Neo Software NETZSCH
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Kinetic Analysis da
dt
Arrhenius only
Model-free Model-based Arrhenius or non-Arrhenius
Multi-point Multi-step model (connection of steps)
Ozawa-Flynn-Wall independent
Friedman consecutive
. : competing
Kissinger Akahira Sunose

Vyazovkin for heating
Numerical

13



Kinetics Neo Software
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Temperature

Data import

Log(Time)

Signal
Conversion
Conversion Rate
X Axis Y Axis
ct L

4 Source Data
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Add New
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Kissinger-Akahira-Sunose
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4 Model Based
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kinetics
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Prediction and Rate Control NETZSCH

— Technical application of kinetics model
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‘ 3 Step-by-Step Guide to Kinetics Analysis



Kinetic Analysis Using Non-Isothermal Thermogravimetry Measurements “Elllzsc“
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Kinetics Neo Software is compatible with measurements (tests) data made by
both NETZSCH and NON-NETZSCH instruments

TG 309 Libra Classic | A Mass fast heating

e

slow heating

Temperature

Thermogravimetry: mass change is measured during heating



How to Determine Thermal Stability of an Olive Stone With TGA?

DTG
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NETZSCH
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Mass loss versus temperature (TG) and derivative thermogravimetric (DTG) curve of olive stone sample for heating rate

10 °C min—1in N2



More Than Thermal Stability? “ETZS:H
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TGA measurement

- decomposition temperature

&

=¢ KINETICS
5 = NEO




Measurements at 4 Different Heating Rates “ETZStH
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100 -
90 4

80

1. Carry out the same measurement at 4 different heating rates
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How to Determine the number of steps? (_‘5)



Decomposition Steps... NETZStH
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Model Based

Legend

Al Curves
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... Or More??7??
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Kinetic evaluation of the decomposition of olive stone “ETZS:H
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Pre-
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‘ L Termica Neo Software



Complete Solution for Customer‘s Problem:
from Measurement to Simulation

NETZSCH

Prediction: Bakelite_slab
Temperature

3. Simulation (kg, ton)

1

2. Chemical Kinetics (mg) i %

]

1. Laboratory measurements (mg)

Proven Excellence.

== TERMICA
m NEO

8 & KINETICS
'€ \eo

Laboratory Instrument:
DSC/TGA/ARC/HFC, ...

26



Physical data for simulation: reacting media and containers

NETZSCH
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Specific Heat Capacity

0 50 100 150
Temperature / °C

Reactant Dimensions

Radius | 5 cm

Height | 3 |em

Container Surfaces

200

Surface: 51 Top

Material: ~ Aluminium
Thickness: | 05 cm
Surrounding: Air

Surface: S2 Side

Material: | Aluminium
Thickness: 2 cm

Surrounding: | Air (5m/s, smooth surface)

Surface: S3 Bottom

Material:  Aluminium

Thickness: 1 |em

S|
Surrounding:  Water (no moving)

250

PA 12 (Polyamid 12)
Density

0s2 Density

-40 10 60 110 160
Temperature / °C

AlGurves

% © Demaity
-

027
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026

0,255

W/(m*K)

0,245

0.24

0,235

023
0

Dravinn Fvenllanca
'PA 12 (Polyamid 12)'
Thermal Conductivity
A Legend
~ e rov.
/ \x % © ™ Conduaviy
/ Ay
y 4
/I \.
Y \
/ R

Thermal Conductivity

20 40 60 80 00 120 140 160 180
Temperature / °C

Surface properties:
Heat transfer coefficient
and emissivity

All physical properties are
temperature-dependent

Material library
contains mostly used
materials like polymers,
metals, alloys

27



Simulation example Pyrolysis “ ETZS:H
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Radius = 10 cm
Height = 8 cm 25°C

120°C

28



Temperature vs time at any point of the reacting volume N ETZStH
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Horizontal position: R=0 Prediction: Prediction_Epoxy

Temperature, Axial
Legend

All Curves
—— Surounding §1Top
1401 | — Surounding 52 Side
Z:80% | — surounding 53 Bottom
\ | — — Container Surface §1Top
120 —| a - SR L
o | == Comainer Surface 53 Bottom
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g %
'—

2
3 — X=30% Z=30%
© ' —— X=50%: Z=40%
880 —
—  X=50%Z=70%
= V) 2 < —— X=50% Z=80%
Z 60 /0 —BU | — X=50%; Z=00%
— X=50%Z=100%
/ rad
40
Z=20%
20 T ;
0 50 100 150 200 250 300
Time / min

Possible to show: Temperature, conversion, conversion rate vs time
29



Temperature vs time at any point of the reacting volume “ Elllzsc“
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Ve rt|CaI pOS|t|O n. Z: 80% Prediction: Prediction_Epoxy

Temperature, Radial, z = 80%

1 60 Legend
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<m@Ed
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o
o
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L

©
o

d

f=Y
o

/o 50 100 150 200 250 300

Time / min

AXis

Possible to show: Temperature, conversion, conversion rate vs time
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Simulation Results for cylinder “ E'I'ZS[I'I

Proven Excellence.

ConversionRate, Radial, z = 66%, t = 130,0 min

. Vertical Section Horizontal Section -
Prediction: Prediction_Epoxy

Prediction: Prediction_Epoxy
Temperature, Axial, t = 130,0 min

140
I 130
120

=110
— 100

Y /cm
|
Y/cm

10
X/cm

Output from Termica Neo

31



Step-by-Step Recap NETZSEH
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[ Starting material ] TG 309 Libra Classic |
N\ —
At least 3 measurements at l M ] I\
easured data TGA,.... =
different heating rates. \?k
J v 1 n
4 ™ !
Kinetics Analysis \ ’
Import data

Create the most suitable model B
U Reaction type for each step =‘ K I N ET I C s
B '= NEO

= nth order

=  Autocatalysis
- /

i- JEEORmICH 4—[Kinetics Triplet, Prediction and Process Optimization ]




What Makes Kinetics Neo and Termica Neo So Valuable “E"zsc"
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« Fast and easy to handle with improved user interface

* Includes all model-free and model-based methods; statistical comparison of the results
obtained from different methods

« The most accurate kinetic triplet can be obtained

* Predictions and optimizations possible with model-free and model-based methods



Unique: Kinetics Analysis must fulfil ICTAC kinetics recommendations “ETZS:H
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ICTAC: International
Confederation for
Thermal Analysis and
Calorimetry

Thermochimica Acta
Volume 689, July 2020, 178597

=¢' KINETICS
B = NEO

Review

ICTAC Kinetics Committee
recommendations for analysis of multi-step
kinetics

m Model free analysis
. o Sergey Vyazovkin © & B Alan K. Burnham °, Loic Favergeon ©, Nobuyoshi Koga ¢,
. M ultl_step model_flttlng (model based) Elena Moukhina El Luis A. Pérez-Maqueda |, Nicolas Sbirrazzuoli ¢

a

Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street,
Birmingham, AL, 35294, USA

b alan Burnham Consultant, 4221 Findlay Way, Livermore, CA, 94550, USA

€ Mines Saint-Etienne, University of Lyon, CNRS, UMR 5307 LGF, Centre SPIN, F-42023 Saint-

Etienne, France

a

Department of Science Education, Graduate School of Education, Hiroshima University, 1-
1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

NETZSCH-Geratebau GmbH, Wittelsbacherstrasse 42, Selb 95100, Germany J
Instituto de Ciencia de Materiales de Sevilla, C.S.I.C-Universidad de Sevilla, C. Américo
Vespucio No. 49, 41092 Sevilla, Spain

University Cote d’Azur, Institute of Chemistry of Nice, UMR CNRS 7272, 06100 Nice, France

™)

=)

Received 18 March 2020, Accepted 19 March 2020, Available online 16 May 2020, Version of Record
5 June 2020.



NETZSCH Kinetics Neo Web Site: How to get a trail

version “ETZS:H

B Go to: https://kinetics.netzsch.com

ittpsy//kinetics.netzsch.com/en

m Trial Version 30 days

a4 KINETICS
i 'm NEO

kinetics.neo@netzsch.com
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What Contact,
licatie F.
ishew  Feawres | leam | Applications  Documents AQ ice, Support Q

Kinetics Neo

Software for Kinetic Analysis and Simulation of Thermoanalytical Data for Chemical Processes

Kinetics Neo software fully supports “ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics”

News

Octaber, 23, 2024 Webinar Ceramics Sintering; Kinetics, Simulati o Py O Using the Kinetics Neo and Termica
Neo Software

h 2 o th s sintering of different ceramic materials in order to get the
highest quality at lowest costs. They include kinetic modelling of the process by the NETZSCH Kinetics Neo software and then the
simulation of this process for the user's geometry by the Termica Neo software. Thi vl your d saves alot of
time and efforts compared to the way of trial-and-error
Register for Webinar
September 25-27, 2024 Kinetics Neo and be presented on 50 GEFTA annual conference 2024 in GieBen, Germany
s 2 talks:

= Elena Moukhina, Jan Hanss. Kinetic Modeling of Metal Reduction at Different Temperature Conditions and Hydrogen
Concentrations


https://kinetics.netzsch.com/
mailto:kinetics.neo@netzsch.com

You can rely on NETZSCH. “ETZStH
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Thank you for your attention!

Dr. Mohammed Bouzbib
Chemist

For further questions please contact

kinetics.neo@netzsch.com
webinar ngb@netzsch.com
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