At a Glance – Highlights of Kinetics Neo

Purpose	 Kinetics Neo is a 64-bit software for studying chemical kinetics (reaction kinetics) and crystallization kinetics. It investigates the reaction rates of chemical processes including autocatalytical curing, aging, decomposition as well as crystallization depending on time and temperature. Kinetics Neo contains 10 model-free methods including numerical methods for the best model-free results. Kinetics Neo features a unique model-based method that allows for analyzing multi-step processes, determining a kinetic model and making predictions and optimizations based on this model.
Kinetic analysis	 The software uses both model-free and model-based methods. The results of these methods can be statistically compared with one another. Model-free methods determine the activation energy and pre-exponential factor as functions of the conversion degree. Model-based methods determine the kinetics model including Number of reaction steps Step contribution to the total effect Parameters for each reaction step: Reaction type Activation energy Reaction order Parameters for crystallization: Dimension of nucleation Melting temperature and glass transition temperature
Predicitions	Based on results of the model-free method or on the created kinetic model, the software simulates the reaction rate and conversion for any user-defined temperature program. This allows for prediction of the sample properties for temperature conditions which differ from the originally measured conditions.

System Requirementts, Gener	ral Data of the Software
Operating systems	x64 versions Microsoft Windows 11, Windows 10 and Windows 7
Application language	English
Integrated help system	Context-sensitive, browser-style HTML help interface
Minimal hardware requirements	Desktop PC, laptop or tablet PC; Intel® Core i5 processor, 8 GB RAM, hard disk space 20 GB, display 1440 x 1050
Software delivery	Internet download; CD version is available as a paid option.

-	~		
Data	tor	Anal	VSIS
Data	101	7 1101	y JIJ

Data type for kinetic analysis	 DSC DSC with Diffusion Control DTA TGA DIL 	 DEA ARC temperature Viscosity Rheometry
Number of measurement data	Unlimited	
Import	 Data import can be done from plain contain either three columns (time, t columns (time and signal or tempera Data can be imported from the projection 	text ASCII file, CSV file. Data should temperature, signal) or two ature ects of Thermokinetics3
Baseline types	 Linear Horizontal area proportional Tangential area proprotion Horizontal left starting Horizontal right starting Tangential left starting Tangential right starting Zero Bezier Linear expansion (DIL) 	 Heating/cooling (DIL) Left horzontal (DEA isothermal) Left tangential (DEA dynamic) Right tangential (DEA dynamic) Tangential (DEA dynamic) Left horizontal (viscosity) Left tangential (viscosity Left horizontal (ARC temp. HWS) Left horizontal (ARC temp) Tangential ARC (temp)
Model-Free Methods		
Definition	Model-free analysis allows to find the a without assumption of a	activation energy of the reaction
Methods based on a single conversion	 ASTM E698 ASTM E2890 ASTM 1641 Isothermal Arrhenius for time-to-eve Dynamic Arrhenius for failure tempe 	nt rature
Conversion-dependent Methods	 Friedman Ozawa-Flynn-Wall (OFW) Kissinger-Akahari-Sunose (KAS) Vyazovkin for dynamic data Numerical Optimization The numerical model-free method ense model-free solution to achieve best the and experimental curves. 	ures fast determination of the best e agreement between simulated
Results	 Analysis graph Plot of activation energy vs degree of Pot of pre-exponential factor vs degree Master plot f(α) Conversion fit for signal, conversion a 	f conversion ee of conversion and conversion rate

Model-Based Methods

Multi-step analyzing engine	Model-free methods allow for analyzing only one-step kinetic processes. However, approximately 95% of all chemical reactions are multi-step reactions. This requires the multi-step analyzing engine of the Kinetics Neo software.		
Unique features	The model-based kinetic analysis is based on an unlimited number of models including an unlimited number of reaction steps where the individual steps are linked as independent, parallel, competing or following.		
Kinetic models	 Visual creation of a kinetic model Visual adding, removing or editing of each reaction step Visual adjustment of position, contribution, activation energy and peak shape of each step Optimization of kinetic parameters for one individual step Optimization of kinetic parameters for the complete kinetic model 		
Reaction types	 Each individual reaction step in each rincluding Reaction of 1st, 2nd and n-th order with Reaction of 1st, 2nd and n-th order with Prout-Tompkins and Kamal-Sourour 2-/3-dimensional phase boundary reaction 2-/3-dimensional diffusion (Jand Prout-Tompkings reaction 2-/3-/n-dimensional nucleation according to the Nake Hoffman-Lauritzen Theory Models for glass transition function Di Benedetto model Splines 	nodel can be one of 19 reaction types ithout autocatalysis ithout autocatalysis including reactions eactions er's type and Ginstling-Brounstein) ording to Avrami amura equation using the for diffusion control	
Kinetic results	The software determines the kinetics model including Number of reaction steps Step contribution to the total effect Standard parameters for each reaction step: Reaction type Activation energy Reaction order Additional parameters for some reaction types Order of autocatalysis Dimension of nucleation or diffusion Parameter for crystallization Melting temperature and glass transition temperature Nakamura parameter K 		
Stastical results	 Correlation coefficient Sum of the squares of deviations Mean residual t-value 	 Durbin-Watson value Durbin-Watson test F-test for fit quality F-test for the number of steps 	

Predictions	
Isothermal predictions	Predictions for several isothermal temperatures
lsothermal lifetime predictions	Predictions for given conversion at several isothermal temperatures
Dynamic prediction	Predictions for several heating rates for reactions or for several cooling rates for crystallization
Multi-step prediction	Prediction for a user-defined sequence of dynamic and isothermal segments with the possibility of export/import of multi-step program to/ from text file
Step-iso prediction	Prediction of a step-iso temperature program, representing a stepwise temperature increase
Modulated predictions	Prediction of a modulated temperature program which is the sum of an underlying constant temperature or constant heating and a sinus-shaped temperature oscillation
Adiabatic prediction	Calculation of the adiabatic temperature increase for various initial temperatures
Adiabatic 24 (TD24)	Find the start temperature for adiabatic process at maximum heating rate in 24 hours
Climatic prediction	Prediction for the real atmospheric temperatures for a selected point on the Earth, from the selected day of the year, for the selected durations, which is usually several months or years
Predictions based on external temperature profile	Prediction for the real atmospheric temperatures for a selected point on the Earth, from the selected day of the year, for the selected durations, which is usually several months or years.
Prediction under pre-defined fire conditions	This method uses standard fire presets loaded into external temperature profile prediction
TTT diagram	Time-Temperature-Transition diagram for reactions with diffusion control
Results of prediction according to the user- defined temperature program	After input of the temperature program by the user, the software will make a simulation of the system behavior. The following values can be simulated: • Measurement output (signal) • Conversion • Conversion rate • Concentration of the reactants for model-based method only • Reaction rate for individual reaction steps for model-based method only • Presentation of conversion rates as the sum of individual reaction steps • Predictions of raw viscosity for viscosity project type The simulated values can be presented: • Curves as a function of time • Curves as a function of temperature • Table with simulated values, time and temperature

Optimization

Conditions for optimization	Finding a temperature program for a given system behavior (optimization). It is the typical question arising during a production process. The temperature program for optimal time and quality must be found. Without the Kinetics Neo software, it is necessary to make an adjustment of the temperature program by hand and to measure several times while hoping to achieve the expected signal curve. The software – in contrast – saves time and finds such a temperature program = For a given reaction rate = For a given output (signal) = For a given rate of the final product production = For user-defined function of conversion versus time
Results of optimization	 Temperature program Measurement output (signal) Conversion Conversion rate Concentration of the reactants, for model-based method only Reaction rate for individual reaction steps, for model-based method only Presentation of conversion rates as teh sum of individual reaction steps Prediction of raw viscosity for viscosity project type Sum of peaks represents the total conversion-rate curve as the sum of the individual reaction peaks The simulated values can be presented: Curves as a function of time Curves as a function of temperature Table with simulated values, time and temperature

File Operations, Graphics and Export

Graphical presentation of data and results	 Presentation of the data in graphic format having X-axes as temperature, time, or logarithm of time. Y-axes in absolute scale or relative scale from minimal to maximal value for each curve with data of Measurement output (signal) Conversion Conversion rate Conversion rate of the reactants for model-based method only Sum of peaks: Presentation of the total reaction-rate curve as the sum of individual reaction steps, for model-based methods only Raw viscosity for viscosity project type
Graphical options	 Add vertical and/or horizontal grid Add legend Add any number o arbitrary text blocks to the graphics Add model scheme
Export	 For all data, analysis results, predictions and optimizations as well as for model-free plots, the following operations are enabled: ASCII export of results including measured data and simulated curves as well as activation energies and pre-exponential factors for model-free analysis Copy graphics to clipboard Saves graphics as a picture to PNG format Sum of peaks: presents the total conversion-rate curve as the sum of individual reaction peaks
	For model-based analysis: = Equations for reaction rate for each individual reaction step in the kinetic model = Equations for concentration of each reactant = Balance equation for total signal such as DSC/TGA/DIL, etc. = Copy the image of model to clipboard = Export model into fileC graphics as a picture to PNG format = Import model from file

