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Agenda
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1. Kinetics for thermosets, composites, photopolymers:  

Introduction and Workflow

2. Thermal analysis methods for study of curing process:

Properties  and methods

3. Kinetic models for curing process, dependence on time and temperature

Kinetic approached, models, autocatalysis, diffusion control

4. Time-Temperature-Transformation diagram, including gelation and vitrification

Construction and  Validation

5. Dependence of curing on additional parameter

1. UV intensity

2 Concentrations

6. Simulation of curing process in thick layers depending on thickness and surrounding. Termica Neo software
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Kinetics for 
Thermosets, composites, photopolymers
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Idea: How to solve the problems
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A  →  B

3. Simulated  reaction 

for new temperatures

(here: isothermal)

1. Measured data for the process 

at different temperature conditions

(here: heating for epoxy resin)

Kinetic analysis helps to

- Find and describe the kinetic mechanism of chemical reaction

- Predict degree of conversion and reaction rate for given temperature program

- Optimize industrial processes: decrease production time and costs

and improve the quality of product 

2. Kinetic Model for the chemical reaction

Simulated curves must fit experimental data
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2 Thermal analysis methods for curing process
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Dielectric analysis

+    -



Material properties, important for curing kinetics

Properties:

• Enthalpy of reaction

• Gel point, 

• Glass transition temperature, 

• Heat capacity

• Viscosity
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Methods: 

• DSC, 

• TM-DSC, 

• rheology, 

• dielectric analysis
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Main data for kinetic analysis of curing systems: 

heat flow, shear viscosity, ion viscosity

77

fast heating

slow heating

Heat flow 

Temperature

Heating

DSC

𝛼 𝑡 =
∆𝐻(𝑡)
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fast heating
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Log(Viscosity) 
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Reactant
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∆𝜂(𝑡)
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Log(η)

Temperature conditions: heating with different heating rates or isothermal at different temperatures

DEA

Dielectric analysis

Low Temp

High Temp

ΔIV
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Log(Ion Viscosity) 

time

𝛼 𝑡 =
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Reactant
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Differential scanning calorimetry (DSC): enthalpy and glass transition
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Glass transition 

temperature Tg,

Second heating

Heat 

Flow

Enthalpy

Glass transition 

temperature Tg,

First heating

Exo down

Temperature

Enthalpy

Glass transition temperature 

Tg

Reversing Heat 

flow

Exo down

DSC TM-DSC
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Rheology: Gel Point Determination over shear modulus
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Gel Point

Shear modulus

Log scale

Temperature

Elastic component G’

Viscous component G”

kinetics.netzsch.com



3
Kinetic models for curing process, 
dependence on time and temperature
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Arrhenius equation. Activation energy. Kinetic triplet

Conversion α: degree of conversion, changing from 0 to 1

Pre-exponent A: collision frequency [1/s]

Activation energy Ea [kJ/mol]

𝑓 α Reaction type (nth order, autocatalysis, nucleation …)

Reactant     Product

energy

reaction pathway

Reactant

Product

H

transition state

Ea

R: gas constant 8.31 [J/(mol K)] T: absolute temperature [K] T[K]=T[°C]+273.15

𝑑𝛼

𝑑𝑡
= 𝐴 𝑒𝑥𝑝

−𝐸𝐴

𝑅𝑇
𝑓 α

Arrhenius equation (1889) for reaction rate:
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Model free approach:

1. Only one kinetic equation 

2. Ea and A depend on α

Model based approach:

1. Each step has own kinetic equation 

2. Ea and A are independent from α



Kinetic Modelling for Curing

𝑑𝛼

𝑑𝑡
= 𝐴 ∙ 𝑓 α ∙ 𝑒𝑥𝑝

−𝐸𝑎

𝑅𝑇

Chemical process is generally described by Arrhenius equation:

Curing can be described by the equation Kamal-Sourour for autocatalytic reaction: 

𝑑𝛼

𝑑𝑡
= 𝐴 ∙ 1 − 𝛼 𝑛 ∙ exp

−𝐸𝑎1
𝑅𝑇

+ 𝐴 ∙ 𝐾 ∙ 1 − 𝛼 𝑛 ∙ 𝛼𝑚 ∙ exp
−𝐸𝑎2
𝑅𝑇

n-th order 

n-th order 

autocatalysis autocatalysis

Cmn – reaction of the nth order 

with autocatalysis of mth order 

by product

Bna – autocatalytical reacton

of Prout-Tompkins

𝑑𝛼

𝑑𝑡
= 𝐴 ∙ 1 − 𝛼 𝑛 ∙ exp

−𝐸𝑎1
𝑅𝑇

1 + 𝐾 ∙ 𝛼𝑚

𝑑𝛼

𝑑𝑡
= 𝐴 ∙ 1 − 𝛼 𝑛 ∙ exp

−𝐸𝑎1
𝑅𝑇

∙ 𝛼𝑚

This equation with its parameters A, Ea1, n, Ea2 , K, m, is the kinetic model. 12



Autocatalytic model for mono-functional epoxy

(phenyl glycidyl ether with aniline)
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One-step autocatalytic reaction of Cn type
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2-step Epoxy curing with two consecutive steps
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DSC Measurement of a Phenol Formaldehyd Resin

DSC 214 Polyma

Sample: PF resin

Crucible: high-pressure

Sample mass: 20.24 mg

Temperature program: RT… 280°C, 5 K/min

kinetics.netzsch.com



Shear viscosity for Epoxy system (Rheology)
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Baseline reactant

Baseline product

Tangential baseline for heating

Moukhina Kinetics 

Kinetic model

kinetics.netzsch.com

Prediction of Viscosity



Kinetic model for DEA data of epoxy curing 
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Company Introduction – Blacks Advanced Composites

Blacks S.r.l.

Headquarters: Faenza, Italy

• Specialty: Design, prototyping and manufacture of advanced composite materials

• Carbon, glass, aramid, hybrid fibres

• Hand lay-up, autoclave curing

• Automotive, sporting goods, marine and aerospace sectors

• More information:

http://www.blacks-composites.it 

Optimising the Curing Cycle of Polymer-based Composites Using DSC and Thermokinetic Modelling

http://www.blacks-composites.it/


The Challenge: Optimise the Curing a CFRP Bike Rim

Can the cycle be shortened 

with the same or a better 

part quality?

 demoulding

Optimising the Curing Cycle of Polymer-based Composites Using DSC and Thermokinetic Modelling

• Total cure cycle: 12 hours to reach 

required 95% conversion, based on 

material data sheet

• Existing cycle too long and needed 

optimisation

• Overheating of the material must be 

avoided due to the curing exotherm



Step 2 - Kinetic Analysis of CFRP Prepreg @ 4 heating rates

Optimising the Curing Cycle of Polymer-based Composites Using DSC and Thermokinetic Modelling



Step 3  - Kinetics Neo Model Free Analysis: CFRP Prepreg

‘Numerical Optimisationʼ Provides Easy 

One Click Solution – R2=0.99896

Optimising the Curing Cycle of Polymer-based Composites Using DSC and Thermokinetic Modelling

Model Validation at isothermal conditions



Results: New Optimised Cycle – 220 Minute Time Saving!

Conventional Cycle New Cycle

Production time reduced from 460 to 280 minutes

 demoulding  demoulding

Optimising the Curing Cycle of Polymer-based Composites Using DSC and Thermokinetic Modelling

• Maximum conversion rate of new cycle does not exceed conventional cycle



Curing models with diffusion control

Glassy

state

Rubbery or liquid

state

Glass transition increases with degree of cure

Cold Warm

Slow curing

T<Tg 

Fast curing

T>TgTg
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Reaction

starts
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Determination of glass transition Temperature 

for partially cured material
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Tg_partially cured corresponds to conversion α=1-(rest curing/total curing)

Tg_partially cured

Tg_uncured

kinetics.netzsch.com



Time-Temperature-Transformation Diagram
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Diglycidylether bisphenol A 

(DGEBA)-based epoxy resin. 

a hardener (e.g., amine) is mixed to the epoxy 

monomer and this mixture is introduced into a 

mold containing (or not) a reinforcement.

kinetics.netzsch.com



Measurements Step1: enthalpy and glass transition (DSC) 

for original material
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-39.7°C, uncured
123.6°C, totally cured

Moving of Tg during curing

Reaction enthalpy is found as the peak area

Diglycidylether bisphenol A 

(DGEBA)-based epoxy resin. 

kinetics.netzsch.com



Measurements Step2: enthalpy and glass transition (DSC) 

for partially cured material
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Partially cured material 

from 0 to 20 hours at 20°C

Moving of Tg during curing

kinetics.netzsch.com



Measurements Step3: enthalpy and glass transition (TM-DSC) 

for partially cured material
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Reversing Cp (specific heat capacity) for the samples with different degrees of cure, 

Moving of Tg during curing

TM-DSC: reversing heat capacity

Partially cured material 

from 0 to 20 hours at 20°C

3 K min−1

Partially cured material 

from 0 to 20 hours at 20°C

kinetics.netzsch.com



Glass transition Temperature depends on Conversion
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Di Benedetto equation 

kinetics.netzsch.com



Reaction Kinetics for diffusion control
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f(α): Kamal-Sourour

Chemical rate (slow):

Tmaterial<<Tg

Diffusion controlled rate

Tg<Tmaterial<Tg+100

Williams-Landel-Ferry: 

Chemical rate (fast):

Tmaterial>>Tg

Low Pre-exponent A High Pre-exponent A 



NETZSCH Kinetics Neo for curing with diffusion control

Diffusion control can be switch ON/OFF  for each reaction step
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Measurements Step4: Gel point (Rheology) 

for original material
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Gel Point

At 67% conversion of DSC
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Time-Temperature-Transformation diagram based on DSC data
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TTT diagram of the investigated epoxy resin

viscose 

liquid

elastic
glassy

uncured

fully cured

days
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Verification of TTT diagram for 5 days at Room Temperature
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Prediction of Kinetics Neo for curing at room temperature

After curing of 5 days

conversion

Tg

DOI: 10.1002/mats.202400039

Verification of TTT diagram is done for conversion, gel point and glass transition temperature.



3. Dependence on additional parameter
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UV curing at different temperatures and different intensities (10kHz)

36Data: https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353 

Isothermal DEA measurements at 30°C, 90°C, 150°C
for light exposure at 75mW/cm2

Temperatures 
for 75mW/cm2

• 30°C
• 90°C 
• 150°C 

Isothermal DEA measurements at 30°C for light exposure 
at different intensities from 75mW/cm2 to 150mW/cm2

UV Intensities at 30°C
• 36 mW/cm2

• 75 mW/cm2

• 150 mW/cm2

• 300 mW/cm2

https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353


Common model in Kinetics Neo 

depending on both temperature and the intensity of UV light

37Data: https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353 

Temperatures
• 30°C
• 90°C 
• 150°C 

UV Intensities
• 36mW/cm2

• 75mW/cm2

• 150mW/cm2

• 300mW/cm2

https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353


Different concentration ratios: data for analysis
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Peak position for different concentrations
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Epoxy/Aniline   1:1
Peak 10K/min 194°C 

Epoxy/Aniline   1:2
Peak 10K/min 180°C 

Epoxy/Aniline   2:1
Peak 10K/min 207°C 



Different shape of the curves

40

1:1

2:1

1:2

10K/min



Independent kinetic analysis for each concentration ratio

41

Epoxy/Aniline   1:1
logA=2.9
n=1.8

Epoxy/Aniline   1:2
logA=3.3
n=1.1

Epoxy/Aniline   2:1
logA=3.0
n=1.0



Kinetics Neo: common kinetic model 

for all concentration ratios and all heating rates

42



5
Simulation and optimization for thick layers 

Dependence on thickness and surrounding 

Termica Neo software
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Simplest example for epoxy curing:

Is the curing reaction complete after 2 hours?

44

Steel, 120°C

100°C

Air, 25°C

100°C

Radius = 10 cm

Height  =   8 cm

Container: Steel



Results: Temperature vs time at any point of the reacting volume:

Vertical or horizontal

45Possible to show: Temperature, conversion, conversion rate, concentrations vs time



Simulation Example: Find Tg during Curing of epoxy

Horizontal and vertical cross-sections for cylinder
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Material temperature T

Glass transition 

temperature Tg

T<Tg: glass

T>Tg: viscose liquid/gel

time=150min

time=150min

Vertical SectionHorizontal



Simulation Example: changing of length

47

Before 

procerss
final

product

Reasons for linear changes:
1. thermal expansion
2. different density properties for reactant and final product (here)

during 

process



NETZSCH Kinetics Neo Web Site

https://kinetics.netzsch.com

Trial Version 30 days

Users Guide, Training examples, 

Webinars: (pdf and video): 

• Advantages and disadvantages of different kinetics approaches.

• Unique and powerful features of NETZSCH Kinetics Neo software

• Crystallization

• Polymers

48kinetics.netzsch.com



Unique: Kinetics Analysis must fulfils ICTAC kinetics recommendations

49

 Model free analysis

 Multi-step model-fitting (model based) 

 Diffusion control for curing

 Crystallization kinetics

 Kamal model for curing

 Deconvolution analysis (sum of peaks)

International Confederation for Thermal Analysis and Calorimetry

kinetics.netzsch.com
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