Analyzing & Testing

CURING KINETICS: Measurements, Models, Kinetics analysis and process optimization by Kinetics Neo

Elena Moukhina Webinar, February,18 2025

Agenda

- 1. Kinetics for thermosets, composites, photopolymers: Introduction and Workflow
- 2. Thermal analysis methods for study of curing process: Properties and methods
- 3. Kinetic models for curing process, dependence on time and temperature Kinetic approached, models, autocatalysis, diffusion control
- 4. Time-Temperature-Transformation diagram, including gelation and vitrification Construction and Validation
- 5. Dependence of curing on additional parameter
 - 1. UV intensity
 - 2 Concentrations
- 6. Simulation of curing process in thick layers depending on thickness and surrounding. Termica Neo software

Kinetics for Thermosets, composites, photopolymers

kinetics.netzsch.com

2 Thermal analysis methods for curing process

Properties:

- Enthalpy of reaction
- Gel point,
- Glass transition temperature,
- Heat capacity
- Viscosity

Methods:

- DSC,
- TM-DSC,
- rheology,
- dielectric analysis

Main data for kinetic analysis of curing systems: heat flow, shear viscosity, ion viscosity

Temperature conditions: heating with different heating rates or isothermal at different temperatures

Differential scanning calorimetry (DSC): enthalpy and glass transition

NETZSCH

Rheology: Gel Point Determination over shear modulus

Temperature

Kinetic models for curing process, dependence on time and temperature

Arrhenius equation (1889) for reaction rate:

$$\frac{d\alpha}{dt} = \mathbf{A} \exp\left(\frac{-E_A}{RT}\right) f(\alpha)$$

Conversion α : degree of conversion, changing from 0 to 1 Pre-exponent A: collision frequency [1/s] Activation energy Ea [kJ/mol]

 $f(\alpha)$ Reaction type (nth order, autocatalysis, nucleation ...)

Model free approach:

- 1. Only **one** kinetic equation
- 2. Ea and A depend on α

Model based approach:

- 1. Each step has own kinetic equation
- 2. Ea and A are independent from α

Kinetic Modelling for Curing

Chemical process is generally described by Arrhenius equation:

$$\frac{d\alpha}{dt} = A \cdot f(\alpha) \cdot exp\left(\frac{-Ea}{RT}\right)$$

Curing can be described by the equation Kamal-Sourour for autocatalytic reaction:

$$\frac{d\alpha}{dt} = A \cdot (1 - \alpha)^{n} \cdot \exp\left(\frac{-E_{a1}}{RT}\right) + A \cdot K \cdot (1 - \alpha)^{n} \cdot \alpha^{m} \cdot \exp\left(\frac{-E_{a2}}{RT}\right)$$

$$\frac{d\alpha}{dt} = A \cdot (1 - \alpha)^{n} \cdot \exp\left(\frac{-E_{a1}}{RT}\right) (1 + K \cdot \alpha^{m})$$

$$\frac{d\alpha}{dt} = A \cdot (1 - \alpha)^{n} \cdot \exp\left(\frac{-E_{a1}}{RT}\right) (1 + K \cdot \alpha^{m})$$

$$\frac{d\alpha}{dt} = A \cdot (1 - \alpha)^{n} \cdot \exp\left(\frac{-E_{a1}}{RT}\right) \cdot \alpha^{m}$$

This equation with its parameters A, E_{a1} , n, E_{a2} , K, m, is the kinetic model.

n-th order

Autocatalytic model for mono-functional epoxy (phenyl glycidyl ether with aniline)

kinetics.netzsch.com

2-step Epoxy curing with two consecutive steps

NETZSCH

DSC Measurement of a Phenol Formaldehyd Resin

NETZSCH

kinetics.netzsch.com

Shear viscosity for Epoxy system (Rheology)

200

Model Based

Tangential baseline for heating

kinetics.netzsch.com

Kinetic model for DEA data of epoxy curing

NETZSCH

Blacks S.r.l.

Headquarters: Faenza, Italy

- Specialty: Design, prototyping and manufacture of advanced composite materials
- Carbon, glass, aramid, hybrid fibres
- Hand lay-up, autoclave curing
- Automotive, sporting goods, marine and aerospace sectors
- More information:

http://www.blacks-composites.it

The Challenge: Optimise the Curing a CFRP Bike Rim

- Total cure cycle: 12 hours to reach required 95% conversion, based on material data sheet
- Existing cycle too long and needed optimisation
- Overheating of the material must be avoided due to the curing exotherm

Can the cycle be shortened with the same or a better part quality?

Step 2 - Kinetic Analysis of CFRP Prepreg @ 4 heating rates

NETZSCH

Step 3 - Kinetics Neo Model Free Analysis: CFRP Prepreg

NETZSEH

Maximum conversion rate of new cycle does not exceed conventional cycle

Production time reduced from 460 to 280 minutes

Glass transition increases with degree of cure

kinetics.netzsch.com

Determination of glass transition Temperature for partially cured material

kinetics.netzsch.com

time

Time-Temperature-Transformation Diagram

WILEY Online Library

Omexom Hochspannung Gmbh

g Gmbh

Research Article

Time–Temperature-Transformation (TTT) Cure Diagram of an Epoxy–Amine System

Claire Strasser 🔀 Elena Moukhina, Jürgen Hartmann

First published: 15 June 2024 | https://doi.org/10.1002/mats.202400039

Read the full text >

PDF 🔧 TOOLS 🛛 < SHARE

Search

Abstract

A time-temperature-transformation diagram is created for the curing reaction of a diglycidylether bisphenol A (DGEBA)-based epoxy resin. It results from a kinetic analysis performed by means of dynamical differential scanning calorimetry (DSC) measurements; a gelation curve determined with isothermal and dynamical rheological tests; and a vitrification curve obtained from temperature-modulated dynamic DSC measurements. The resulting diagram is validated by comparison of isothermal measurements with the corresponding calculated curves.

a hardener (e.g., amine) is mixed to the epoxy monomer and this mixture is introduced into a mold containing (or not) a reinforcement.

Diglycidylether bisphenol A (DGEBA)-based epoxy resin.

kinetics.netzsch.com

Measurements Step2: enthalpy and glass transition (DSC) for partially cured material

Measurements Step3: enthalpy and glass transition (TM-DSC) for partially cured material

Reversing Cp (specific heat capacity) for the samples with different degrees of cure, 3 K min-1

Glass transition Temperature depends on Conversion

IETZSCH

NETZSCH Kinetics Neo for curing with diffusion control

Diffusion control can be switch ON/OFF for each reaction step

NETZSCH

Measurements Step4: Gel point (Rheology) for original material

Time-Temperature-Transformation diagram based on DSC data

kinetics.netzsch.com

Verification of TTT diagram for 5 days at Room Temperature

Verification of TTT diagram is done for conversion, gel point and glass transition temperature.

3. Dependence on additional parameter

UV curing at different temperatures and different intensities (10kHz)

Isothermal DEA measurements at 30°C, 90°C, 150°C for light exposure at 75mW/cm²

Isothermal DEA measurements at 30°C for light exposure at different intensities from 75mW/cm² to 150mW/cm²

Common model in Kinetics Neo depending on both temperature and the intensity of UV light

Data: https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353

Different concentration ratios: data for analysis

Source Data

Peak position for different concentrations

 2.5 K/min. conc.ratio 1:1 5.0 K/min. conc.ratio 1:1 10.0 K/min. conc.ratio 1:1 1,0 K/min, conc.ratio 1:2 - 2,5 K/min, conc.ratio 1:2 - 5,0 K/min, conc.ratio 1:2 9,9 K/min, conc.ratio 1:2 1,0 K/min, conc.ratio 2:1 - 2.5 K/min, conc.ratio 2:1 - 5,0 K/min, conc.ratio 2:1

Epoxy/Aniline 1:1 Peak 10K/min 194°C

NETZSCH

Epoxy/Aniline 1:2 Peak 10K/min 180°C

Epoxy/Aniline 2:1 Peak 10K/min 207°C

Different shape of the curves

NETZSCH

Independent kinetic analysis for each concentration ratio

Kinetics Neo: common kinetic model for all concentration ratios and all heating rates

5

Simulation and optimization for thick layers Dependence on thickness and surrounding Termica Neo software

kinetics.netzsch.com

43

Simplest example for epoxy curing: Is the curing reaction complete after 2 hours?

Results: Temperature vs time at any point of the reacting volume: Vertical or horizontal

Possible to show: Temperature, conversion, conversion rate, concentrations vs time 45

Simulation Example: Find Tg during Curing of epoxy Horizontal and vertical cross-sections for cylinder

Simulation Example: changing of length

Reasons for linear changes:

- 1. thermal expansion
- 2. different density properties for reactant and final product (here)

NETZSCH

NETZSCH Kinetics Neo Web Site https://kinetics.netzsch.com

NETZSCH

Users Guide, Training examples,

Webinars: (pdf and video):

- Advantages and disadvantages of different kinetics approaches.
- Unique and powerful features of NETZSCH Kinetics Neo software
- Crystallization
- Polymers

Trial Version 30 days

🗄 📲 👯 Learn - Kinetic	s Neo X + V		- U
\leftrightarrow \rightarrow \circlearrowright \Leftrightarrow	https://kinetics.netzsch.com/en/learn/	□ ☆	\$ L B
		NETZSCH Websites 🗸 🔀 English 🗸	Contact
NET	ZSCH What Is New Features Le	A.Q. Applications Support and Service Docs	Q
	reate a Three-Step Kinetic Model for Dil. Data (Sin	uning of sial(4)	
How 1 Accelera	o: DSC, 1 Step, Isomerization of Azobenzene	How To: TGA, 1 Step, CaOH2	
How 1	o: DSC, 2 Steps, Curing of Epoxy Resin	How To: DIL, 3 Steps, Sintering of Si3N4	
How 1		How To: DSC Curing, Data for Diffusion Control	
How 1	o: DSC Curing, Model with Diffusion Control	> How To: TTT Diagram, DSC Diffusion Control	
Impor	t of User-Defined Data		
Literatur	e		
Literature	about Kinetics: Theory, Methods, Applications.		
Applicati	ons		
ttns://kinetics.netzsch.com/en/l	earn/ tions		

New Prediction of Viscosity

We have a new feature in version 2.5: prediction of viscosity values of signal. For this purpose we have added a new scale for the Y axis: "Absolute Raw":

~

Unique: Kinetics Analysis must fulfils ICTAC kinetics recommendations

International Confederation for Thermal Analysis and Calorimetry

- Model free analysis
- Multi-step model-fitting (model based)
- Diffusion control for curing
- Crystallization kinetics
- Kamal model for curing
- Deconvolution analysis (sum of peaks)

