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Problem definition

and Solution Method
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What kind of conditions must we use for thermal simulations?

Partial cases

Low thermal effect 

• Long time predictions known uniform temperature

• Industry simulation of temperature in volume

simulation of reaction rate for known temperature

High thermal effect 

• Industry simultaneous simulation of temperature and reaction in volume

• Thermal Stability simultaneous simulation of temperature and reaction in volume

• Thermal Explosion simultaneous simulation of temperature and reaction in volume
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Materials with high energetic effect in adiabatic container

Φ =
𝑚𝑐𝐶𝑝𝑐 +𝑚𝑠𝐶𝑝𝑠

𝑚𝑠𝐶𝑝𝑠

𝐶𝑝
1

Φ

𝑑𝑇

𝑑𝑡
= 𝐴 ∙ 𝑓 𝛼 ∙ exp

−𝐸𝐴
𝑅𝑇

∙ ∆𝐻Ф=1.0, 

no interaction with container

is off

Reality:

Is this reality safe or dangerous?

How it depends on the material mass?
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• Infinite thermal conductivity 

of material,

• Stirring

• Infinite thermal conductivity 

of container wall

Ф>1

maximal heat exchange 

with container



Complete Solution for Customer‘s Problem: 

from Measurement to Simulation
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DSC 

TGA  

ARC, …

1. Laboratory measurements 

    mg, known temperature

2. Chemical Kinetics 

    mg, uniform known temperature, 

     measurement impossible

3. Simulation

    g, kg, tons, temperature gradients, 



Step 1: measured data

66

fast heating

slow heating

Heat flow 

Temperature

Heating

DSC

high Ф

Low Ф

Temperature 

time

ARC

Thermosets, Composites

Curing, Cross-linking

Energetic materials

Chemical industry

Additional instruments: Other calorimetric  or non-calorimetric instruments (HFC, Rheology, DIL, HFC, C80, TAM and others)

Temperature

mass 
fast heating

slow heating

TGA

Degradation

Decomposition



Kinetics Analysis Must Fulfil ICTAC Kinetics 

Recommendations
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 Model free analysis

 Multi-step model-fitting (model based) 

 Diffusion control for curing

 Crystallization kinetics

 Kamal model for curing

 Deconvolution analysis (sum of peaks)

International Confederation for Thermal Analysis and Calorimetry

kinetics.netzsch.com



Step 2: measured dataKinetic Analysis Methods in Kinetics Neo

Kinetic Analysis

Model-free Model-based Arrhenius or non-Arrhenius
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1. Simple geometry, but complex processes

2. Automatic loading of kinetic parameters and 

equations from NETZSCH Kinetics Neo

3. No limitation for complexity of the chemical 

system



Heat balance for small element with reaction heat as the heat source
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 𝑄𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

dx
dy

dz T(x)

𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 + 𝑄𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜕𝑇

𝜕𝑡
= 𝑎

𝜕2𝑇

𝜕2𝑥
+ ∆𝑇𝑎𝑑

𝑑𝛼

𝑑𝑡

Heat flow out 

qout
𝑞𝑜𝑢𝑡 = 𝑑𝑆 𝜆 ቤ

𝜕𝑇

𝜕𝑥
𝑥+

𝑑𝑥
2

Heat flow out

at point x+dx/2

𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 = 𝑑𝑆 𝜆
𝜕2𝑇

𝜕2𝑥

𝑎 = 𝜆 /(𝐶𝑝 ∙ 𝜌)

𝑑𝛼

𝑑𝑡
= 𝐴 ∙ 𝑓 𝛼 ∙ exp

−𝐸

𝑅𝑇

Heat flow 

difference

Reaction rate

Thermal diffusivity

𝑄𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = ∆𝐻 ∙ 𝑑𝑚 ∙
𝑑𝛼

𝑑𝑡
Reaction Heat

𝑄𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜕𝑇

𝜕𝑡
= 𝑎

𝜕2𝑇

𝜕2𝑥
+
𝜕2𝑇

𝜕2𝑦
+
𝜕2𝑇

𝜕2𝑧
+ ∆𝑇𝑎𝑑

𝑑𝛼

𝑑𝑡

𝐶𝑝 ∙ 𝑑𝑚 ∙
𝑑𝑇

𝑑𝑡
Self-heating

𝐶𝑝 ∙ 𝑑𝑚 ∙
𝑑𝑇

𝑑𝑡
=

𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑑𝑆 = 𝑑𝑦 𝑑𝑧

𝑑𝑚 = 𝜌 𝑑𝑉

Area

Volume

MassdS

Heat flow in 

qin

𝑞𝑖𝑛 = 𝑑𝑆 𝜆 ቤ
𝜕𝑇

𝜕𝑥
𝑥−

𝑑𝑥
2

Heat flow in

at point x-dx/2

∆𝑇𝑎𝑑= ∆𝐻/𝐶𝑝
Adiabatic

Temperature increase



Results: Temperature vs time at any point of the reacting volume:

Vertical or horizontal

10Possible to show: Temperature, conversion, conversion rate, concentrations vs time



2. Concentrations for multi-step processes
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Initial temperature 50°C

Surrounding Isotherm 600°C

t=200min



SADT for Azo-bis-Isobutyronitrile (AIBN), 50kg package in Air

12

Experiment

Simulation: Termica Neo

DSC: Heating

DSC: 

isotherm



Rotation geometry of arbitrary profile
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Temperature Conversion Conversion rate



Rotation geometry of arbitrary profile 
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Will be released in July 2024 



2
Single step reaction

Simulation examples 
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2. Decomposition of 20% DTBP in Toluene

Simulation corresponds to real measurement
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Experiment, ARC 244 Simulation, Termica Neo

Tstart = 115°C

Tend = 191°C

ΔH = 225J/g

Container sphere Titanium R=1.3cm



Single step: Adiabatic simulation for solids
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Center

R=90%

R=100%

R=3.2cm, h=0.9cm, 

stainless steel 316

Calculation 

using Φ-factor



Single step adiabatic simulation: theory vs reality
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Ф>1 (theory)

maximal heat exchange 

with container

Comparison with calculation for Ф>1 (theory):

• Temperature rate is faster

• Maximal temperature is higher

• Final temperature is the same

because of heat balance

Ф>1.0, 

interaction with container

Stirring on Stirring off



Single step for solids: Adiabatic Simualtion with Ф=1.4 and different sizes
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R=1.75cm

The higher radius  the higher temperature in the center. 

Maximal Temperature corresponds to Phi=1 

Reaction enthalpy 395 J/g,

Ф=1.4 for all simulations

139°C 

R=3.5cm

213°C

140°C 

142°C

R= 14 cm

268°C

140°C 



Single step reactions: dependence on reactor size
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For higher material mass under adiabatic conditions:

• Temperature rate is faster

• Maximal temperature is higher

• Final temperature is the same because of heat balance



2
Double step reaction

Simulation examples 
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Industrial processes: primary and secondary reaction

Source: Fransis Stoessel, Thermal Safety of Chemical Processes, 2008, ISBN: 978-3-527-31712-7 23

primary secondary

DSC

Severity: catastrophic for  ΔH>800J/g

critical for ΔH>400J/g

medium for ΔH>100J/g

negligible for ΔH<100J/g

Primary reaction

(main process)

Secondary reaction

(non desired 

decomposition)

total

reaction heat

Cyclohexane 80J/g 140J/g 220J/g

Diazotization 2.5mol/kg 65kJ/mol(162J/g) 150kJ/mol(375J/g) 537J/g

Amination 175kJ/mol(457J/g) 840J/g 1297J/g

Condensation reaction 

in aceton

230J/g 150J/g 380J/g

Sulfonation 150J/g 350J/g 500J/g

Example reaction 

2mol/kg

150kJ/mol(300J/g) 575kJ/mol(1150J/g) 1450J/g

Critical temperature



Industrial processes: Theory of adiabatic self-heating
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primary secondary

primary

secondary
How to avoid secondary reaction:

1. Stirring

2. Cooling

3. Careful selection of size

Primary reaction enthalpy 300 J/g,

Secondary reaction enthalpy 700 J/g,



Adiabatic simulation for 24h: stirring failure
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Ф=1.4 for all simulations
DSC

primary secondary

97 °C

Stirring

571 °C

No stirring

97 °C

Primary reaction enthalpy 300 J/g,

Secondary reaction enthalpy 700 J/g,



101 °C 97 °C

R = 4 R0

152 °C

98 °C

R = 8 R0

Adiabatic simulation for 24h: when the secondary reaction started?
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primary secondary

571 °C

R = 32 R0

DSC

Simulations Ф=1.4

Different size 

Primary reaction enthalpy 300 J/g,

Secondary reaction enthalpy 700 J/g,

251 °C



Primary and secondary reactions: dependence on reactor size
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For higher material mass under adiabatic conditions:

Secondary reaction is not triggered:

• Temperature rate is faster

• Maximal temperature is higher

• Final temperature increase is the same and corresponds to the effect of primary reaction

Secondary reaction is triggered:

• Temperature rate is faster

• Maximal temperature is higher

• Final temperature increase corresponds to the sum of thermal effects 

for primary and secondary reaction



General functionality of Termica Neo

1. Simulation of the chemical reactions in big volumes

2. Calculation of the following properties at each point of volume as the function of time

1. Temperature

2. Degree of conversion

3. Conversion rate

4. Concentrations

5. Glass transition temperature for curing processes

3. Self-accelerating decomposition temperature (SADT)

4. Simulation of reactions for reactor with container, also under adiabatic condition

5. The kinetic modes are taken directly from Kinetics Neo project

(results of any method including model based and model free)

Kinetics is based on ICTAC Methods for multi-step reactions

termica.netzsch.com
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You can rely on NETZSCH.
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Elena Moukhina

elena.moukhina@netzsch.com www.kinetics.netzsch.com

www.termica.netzsch.com

kinetics.neo@netzsch.com

http://www.kinetics.netzsch.com/
http://www.termica.netzsch.com/
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