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NETZSCH

1. Introduction.

What is necessary to know and
why?
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Chemical industry with the thermal risk

NETZSCH

New materials,
colors,

Textiles
Pharmaceuticals
Nitration reactions

Fine chemicals

Manufacture
Transportation

Storage

kinetics.netzsch.com
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Consecuences of thermal runaway NETZSCH

* Fire

« Explosion

« Economic loss

* Injuries and deathes

kinetics.netzsch.com 5
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The core of risk assessment: Severity and probability NETZSCH

Probability Example assessment criteria for the probability.
Category Frequency
Risk = Severity = Probability Frequent Sy s
in a week
Moderate Once or twice
a month
. Occasional Several times
Severity
a year
Example assessment criteria for the severity.
Remote Once a year
Category 1. Negligible 2. Marginal 3. Critical 4. Catastrophic
Life/health Injury, ambulant  Injury requiring  Injury with long-  Fatality
in company treatment hospitalization term disability Unlikely i 5
Business Not affected Production Delivery to Business 10 years
continuity stopped over customers interruption Almost Once in
1 week must be more than I 100 "
interrupted 1 month pes JHALB
several weeks or more

Francis Stoessel , Thermal Safety of Chemical Processes: Risk Assessment and Process Design. (Switzerland) (2008) kinetics.netzsch.com 6
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Risk Factors NETZSCH

* Physical properties :boiling, melting, ...

« Chemical properties: stability, ignition, sensitivity to light, air, water

« Toxicity: toxic and cancirogenic materials

« Ecotoxicity

* Fire and Explosion data: combustion, self-sustaining decomposition

« Chemical interactions: undesired reactions

Kinetics.netzsch.com 7
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Risk factors in Thermal process NETZS5CH

* Thermal effects « Thermal Analysis
* Heat of reaction » DSC,ARC
* Heat capacity » DSC
* Melting and evaporation enthalpy » DSC
* Adiabatic temperature rise » DSC, ARC

« Dependence of reaction rate on temperature — > Kinetic analysis:
TMR approximation,

* Heat removal: cooling Kinetics N
inetics Neo

* Pressure effects
* Gasrelease
* Vapor pressure

Kinetics.netzsch.com 8
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Risk assessment in runaway reactions

NETZSCH

Risk = Severity * Probability

Temperature scale

Assesment crirteria for severity of a runaway reaction

Simplified Extended AT, (K) Order of magnitude of Q" k| kg™
High Catastrophic >400 =800
Critical 200400 400-800
Medium Medium 50-100 100400
<100

Low Negligible <50 and no pressure

Francis Stoessel , Thermal Safety of Chemical Processes: Risk Assessment and Process Design. (Switzerland) (2008)

Time scale

Assesment crirteria for probability of a runaway reaction

Simplified Extended
High Frequent <1
Probable 1-8
Medium Occasional 8-24
Low Seldom
Remote 50-100
Almost impossible >100

kinetics.netzsch.com
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Risk assessment in runaway reactions

NETZSCH

Risk = Severity * Probability

T°C

T T

1 TMR,y=11.2h
400 T o

Probability (time to runaway)

|
300 |

1 Key parameters:
200 TMRad (T), TD24, (TDS...)
100

i Severity (Temperature rise)

Key parameter :ATad

0.0 2.0 4.0 6.0 8.0 10.0

kinetics.netzsch.com
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NETZSCH

> d 2. Definitions

a)

b)
c)

Characteristic temperatures of the process:
Tp, MTSR, TMR, MTT

Primary and secondary reactions

What is TD24? Why it is important?

kinetics.netzsch.com
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Heat balance inside of chemical reactor NETZSCH

m Normal process :

Heat: generation = removal +accumulation + toss

‘ Temperature of reaction is under control

® Thermal runaway :

Heat: generation = o/ @/ +accumulation + s

kinetics.netzsch.com 12
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Thermal Risk for cooling failure scenario: NEIZSCH
primary and secondary reactions

Tp, MTSR, TMR, MTT . —
A
Temperature | | Secondary reaction
Primary reaction (decomposition) ATad, d Qd
(Synthesis)

Maximum temperature of
synthesis reaction

MISRg —— e—— o ____ v
T IATad, s «x Qs
S W - g TMRaamrse
process temperature 1 b : e
L TMRad,Tp Time to Maximum Rtae from MTSR

.. .
y Time to Maximum Rate from Tp

>
/' Time
cooling failure MTT: Maximum technical temperature (e.g.boiling temperature)

kinetics.netzsch.com 13
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Time To Maximum Rate (TMR) and T, NETZ5CH

Tpo4 IS the temperature at which time to maximum reaction rate is 24 HOURS.

Temperature 4
TMR,4 = 24 hours
I
| I
| I
| I
| |
T>Tpos : AE/
Tozs | | | Time
T<Tpp : | |
TMR,4 < 24 hours 24 hours TMR,4 > 24 hours
High Risk Low Risk

kinetics.netzsch.com
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Some common methods for thermal risk assessment NETZSCH

4 Temperature TD24>MTSR TD24<MTSR
Secondary reaction ~ Secondary Secondary
not started reaction reaction
can start starts
TD24
Secondary
reaction \
MTT
Safety barrier —
MTSR ——
End of primary reaction
Tp -, . -
Process temperature 1 2 3 4 5 <«— Criticality classes
—
Low Risk Level High

Please also refer to: Thermal Safety of Chemical Processes: Risk Assessment and Process Design. by Francis Stoessel (Switzerland) (zooﬁinetics.netzschfcom
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Why TD24 is important?

NETZSCH

Temperature

TlV[RmSIh

I il a1
2
1 h<TN[Rad<8 h E I II 1| |
o | =
o)
8 h<=TMR_,<24h e |12 I II II I
[aNn 1IR [
TMR_;>24 h 1 I I I l 11
(— |

2

Severity

2

3

50<C A T,;<<200

200=< A T,;<<400

AT, =400

1 hour

8 hours

24 hours

TMR4

TD24 is calculated mostly for secondary/decomposition reaction, but sometimes also for synthesis reaction, depending on the
sample type (raw material, or synthesis product) and reaction process.

kinetics.netzsch.com
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NETZSCH

3. Kinetic Methods of calculation TD24
offered by NETZSCH

a) Linear TMR Extrapolation
b) Non-Linear TMR Extrapolation
c) Advances kinetics by Kinetics Neo Software

kinetics.netzsch.com 17
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Methods for determination of TD24 by NETZSCH instruments NETZSCH

Methods for TD24

da

—=A4-f(a)-K(T)
/ \ dt

For known reaction type Single-curve

One ARC experiment

O\

Linear TMR Non-linear TMR
Data: ARC Data: ARC
Approximation: Approximation:
Zero-order reaction n-th order reaction

Unknown reaction type,

Multi-curve analysis Several reaction steps

Several experiments
Unknown reactions and steps

7N

Kinetics Neo Kinetics Neo

Data: DSC Data: ARC

kinetics.netzsch.com
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ARC: Accelerating Reaction Calorimetry NETZS5CH

kinetics.netzsch.com 19
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Measurements for kinetic analysis: NETZSCH
Accelerating Reaction Calorimetry

Adiabatic system

Temperature increase because of exothermal reaction

kinetics.netzsch.com 20
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ARC data for decomposition of DTBP

NETZSCH

Horizontal Step(115.08 °C - 193.57 °C):

Time /min

Temp. /°C Thermal Inertia: 1.435
delta T: 785K
delta T ideal: 1126 K
react. spec. heat: 225.264 J/g
200 1 react. total heat:  1320.05 J
150 1 )
Heat-wait-search mode \
100 1 \
Exothermal reaction
50 -
Decomposition of 20% DTBP in toluene
0 100 200 300 400 500 600 700 800 900

kinetics.netzsch.com

21


https://kinetics.netzsch.com/

Phi-factor in ARC instruments NETZSCH

Temperature AT

ideal

Thermal inertia @

‘ Only reactant

Heating of reactant only:

Only reactant

AT
Q:msampleCpsample ATideal observed
Reactant in container Reactant + container
Heating of reactant with container
time

Q:(msamplecpsample + mbombcpbomb ) ATobserved

Formula for thermal inertia (P-factor) according to ASTM E1981:

m, = massof the container

O = (m,- G, +m.-C) D=1+ m.- G, C,. = heat capacity of the container
m -C m -C m, = mass of the sample
R R C , = heat capacity of the sample

kinetics.netzsch.com 22
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Measurements for kinetic analysis: NETZSCH
Accelerating Reaction Calorimetry

Low thermal inertia ®
Temperature

A

High
inertia ®

time

Accelerating Reaction Calorimetry: temperature change is measured during self-heating

kinetics.netzsch.com 23
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Degree of conversion a(t) for ARC data NEIZSCH
(extent of conversion, conversion, extent of reaction)

Commonly denoted by a and defined as the ratio of the partial to total change of a physical property.

femperature conversion a(t)
1
total
Reactant 0
L] E L
time time
AT (t
a(t) = J a=0 before reaction start
ATtotal a=1 after reaction end

ARC: Conversion is the ratio of the partial temperature increase at given time point to the total
temperature increase at the final time point

kinetics.netzsch.com 24
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Arrhenius Equation. Activation Energy. Kinetic Triplet

NETZSCH

A

energy| transition state

Ea

Reactant \ I A

Product

reaction pathway

Reactant —— Product

da

E=A'f(0€)'K(T)

Arrhenius equation (1889) for reaction rate:

d
d_‘z =A-f(a) - exp(_Ea/RT)

Reaction type:

Pre-exponential (nth order, Activation
factor [1/s] autocatalysis, energy [kJ/mol]
nucleation)

As temperature rises, the reaction rate increases exponentially!

R: gas constant 8.31 [J/(mol K)] T: absolute temperature [K] T[K]=T[°C]+273.15

kinetics.netzsch.com
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Linear TMR extrapolation for decomposition NETZS5CH

Heat balance:

Temp. /°C

Cp-¢-%=AH-A-f(a)-Exp[%‘] Y

Linear approximation / -
Zero-order reaction ‘ —-1/T 180
fla)=1

160 1

EFal o
log(TMR) = BT + Const + log @

120 1

100 4

103 102 101 100 10-1
fTime /min

/

TMR in logarithmic scale

kinetics.netzsch.com 26
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Linear TMR extrapolation for decomposition

NETZSCH

Experimental data

L e S
R _
/ =
200 _ _ ~
/ Linear extrapolation .
— 1/T 180 1 -~
: d>1
s time 160 Experimental data
Ea 1 140 1 CD>1
log(TMR) = RT + Const + log ®
120 > Linear extrapolation
TD24=101.0°C ——|_J ~ log @ d=1
10
TD24=97 - 7 ° C / Time to Mmmwzz:z?im 14335 User: Elena Moukhina 102 fTIme /‘:T?I; 100 10_1
24h=1440 min TMR in logarithmic scale

kinetics.netzsch.com

27


https://kinetics.netzsch.com/

Linear TMR extrapolation for decomposition NETZS5CH

Temp. /°C

200 A

180 1

160 1

Eal
log(TMR) = =7 + Const + log @ 1401 Value: 1.44e+03; 101.1°C

120 1

100, Value: 1.44e+03; 97.7 °C

103 102 101 100 10-1
Time /min

kinetics.netzsch.com 28
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NETZSCH Unique feature: NETZSCH

Non-Linear TMR extrapolation for decomposition

Measured curve for @, has temperature step AT, We would like to recalculate to the new @ ,
and the following equation with temperature step AT,
drT. E(a3)
ary\ E(ay) (_2) — ( 2 )
(E) = AT; - A(aq) - f(aq) - exp ( ) dt = AT, - A(ap) - f(a2) - exp

Recalculation of the measured temperature curve at ®, to @, at the same conversion value:

(de> (dT1> @ (-E@ ( 1 )
dt ), ~\dt), @, P\ R\, Ty

2

Isoconversional method is used, where the points of the same conversion are taken into account.

Main assumption: activation energy is the same for whole process.
Reaction type and pre-exponent are not important for this isoconversional method.
This method ensures the accuracy for whole range and makes prediction possible.

kinetics.netzsch.com
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Unique feature:
Non-Linear TMR extrapolation for decomposition

NETZSCH

Decomposition of 20% DTBP in toluene
Temp. /°C
1440.0 min: 209.5 °C
-!.-  — e —
200 - 344.0 min; 193.7 °C |
i |
180 - I
Non-Linear simulation !
160 1 Measured
®=1.0 |
®=1.43 I
140 - /
7/
S
120 - -
0.0 min; 115.2 °C e
00min968°C . -
1004, L 20—
0 200 400 600 800 1000 1200 1400 1600
_ Time /min
Phi Corrected  2023-02-04 14.57  User: Elena Moukhina

kinetics.netzsch.com
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TMR(T) extrapolation: Linear vs. Non-linear algorithm NETZS5CH

Linear TMR approximation: Non-linear TMR approximation:

B It's based on zero-order simplification which is
only valid for low-conversion regions, so the
line on high-conversion region makes no

B The assumption for activation energy:
Ea is constant for the whole process.

sense. B The assumption of process begin as the n-th order

m  Some minor items are discarded during r%?ﬁ;uson is used only for obtaining Ea from the first few
mathematical deduction, so the result is not so P ’
accurate. ® No simplification for reaction type, result is more accurate.

kinetics.netzsch.com 31



https://kinetics.netzsch.com/

Accurate determination of TD24 by Kinetics Neo Software NETZSCH

Bl i C
da — —
—=A:f(a) K(T) = g
dt —' D —_—

Unknown reaction type, — E
- - . -
Multi-curve analysis Several reaction steps =
| Al |
Several experiments il
Unknown reactions and steps ' “q.i

N

Kinetics Neo Kinetics Neo - e e
Data: DSC Data: ARC

kinetics.netzsch.com
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"L
Steps to solve Kinetic Tasks in Kinetics Neo =* NETZSCH

Measured Data Import L . .
por Kinetic Model / Method Simulations
raw data and Processing

Autocatalytic (Cn g e
File 1 ) Processed File 1 ) yte (Cn) . Predictions: .

Reaction of n-th order isothermal / dynamic / arbitrary
File 2 SN Processed File2 | mmm | . al-Sourour
File 3 =) Processed File 3 ) Predictions:

. degree of cure / curing rate / viscosity

File 4 ) Processed File 4 mmm)  Friedman

Ozawa

Optimization:
conversion rate

Optimization:
curing profile

kinetics.netzsch.com 33
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Degree of conversion for kinetic analysis: NETZSCH
Accelerating Reaction Calorimetry

Low thermal inertia @

Low thermal inertia ® conversion a(t)
Temperature 1
A

High
inertia ®

High
inertia ®

time
time

How to change ®?
For unknown reaction the ratio between reactant mass and container mass should be different
Only for first-order reaction type the solution with solvent can be measured. Solvent increases thermal inertia

kinetics.netzsch.com 34
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Measurements for kinetic analysis: NETZSCH
Accelerating Reaction Calorimetry

Adiabatic system with constant power input

Heat IN

Constant power

Temperature increase because of exothermal reaction and constant power input

kinetics.netzsch.com 35
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Kinetic analysis of temperature step NETZS5CH

Reaction causes the step on temperature curve

Temp. /°C
[4.1]
2601
240
220

200 (CH3);COOC(CHy,),

Step: 77.0 °C 20% DTBP

Step: 61.8°C 15% DTBP

Step: 17.4°C 5% DTBP

180 1 -

160 - AT = - AH -

140 1 p_sample

120 Only AH/Cp can be found
120 125 130 135 140 145 150 155 160

Time /min

Main  2010-02-26 13:11  User: Elena Moukhina

Temperature rise with different concentrations of di-tert-butil peroxid (DTBP) in toluene

Acceleration rate calorimeter ARC 254 in VaryPhi mode with the constant underlying power 250mW.

kinetics.netzsch.com 36
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One kinetic model for all three experiments NETZSCH

Model Based Legend
70
< Spercent DTBP_250mW.txt
— Fit
< 10percent_DTBP_250mW.txt

(%)
o

— Fit
< 15percent_DTBP_250mW.txt
— Fit

4]
o

A
o

Temperature / °C
N w
o )

=
o

o

-10° - ; - - ' : ; ;
90 100 110 120 130 140 150 160 170 180

Time / min

kinetics.netzsch.com 37
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Simulation of adiabatic self-heating at different temperatures for ®=1.0

NETZSCH

240

220

200

_.
o
Q@

-
a
<

Temperature / °C

140

120

100

Prediction
s1; @ Adiabatic

o

10

Time / hour

15

20

25

Legend

M All Curves
— 100 °
—102°
—104°
— 106 °
— 108 °
—1i10°
—112°
—114°
116 °

NnOooOo0oo0on0o0o0on

kinetics.netzsch.com
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Calculation of Tp,, for ®=1.0
and simulation of adiabatic self-heating at this temperature

NETZSCH

Prediction

si; ¢ Adiabatic24
220 '

200

180

Temperature / °C
>
o

1407
120

100° ' ‘
0 5 10 15 20
Time / hour

25

Legend
All Curves

— 102,0 °C

kinetics.netzsch.com
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DSC: Differential Scanning Calorimetry NETZSCH

Reaction with thermal effect

; : A Heat flow /

pScC 300 Coliris

Heating

>

Temperature

kinetics.netzsch.com 40
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Measurements for kinetic analysis: NETZSCH
Differential scanning calorimetry

4 Heatflow fast heating

slow heating

Temperature Heating

Differential scanning calorimetry: heat flow is measured during temperature

kinetics.netzsch.com 41
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Conversion a(t) for DSC data NETZS5CH

heat flow conversion a(t)
1
AH(t) AHrest
0
AHtotal = AH (t) + AHrest
time time

AH(t

a(t) = (t)

AHtotal

DSC: Conversion is the ratio of the partial enthalpy change at given time point to the total
enthalpy change at the final time point
Kinetics.netzsch.com 42
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Reaction types: Decomposition

NETZSCH

Arrhenius equation

da

Reaction of n-th order is typical for decomposition

da_
dt

Fn

A|(1—a)"}exp (%l;fl)

kinetics.netzsch.com
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Reaction types: reactions with autocatalysis NETZSCH

Chemical process is generally described by Arrhenius equation:

o _ =A-f(a)-exp (_EA)
dt RT
da —E
Bna - autocatalytical react _ n a m
of Prouilfl'gfnapiinslca e E - A ’ (1 _ a) ’ eXp (ﬁ) " i il
Curing can be described by the equation Kamal-Sourour for autocatalytic reaction: n-th ord\eL
B
—=A-(1—-a)"- ex( >+AK 1—a)" - a™-ex (—) A
g A -t e (1-a) Plrr ) = |5
Y Y =
n-th order autocatalysis autocatalysis

This equation with its parameters A, E_;, n, E,, , K, m, is the kinetic model. kKinetics.netzsch.com 44
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Cyclopentadiene:

What is the initial temperature for TMR=24 hours for Phi=1.0?

NETZSCH

. Set parameters

Project 2 Properties Prediction
I Source Data Adiabatic24 Prediction s:; Fn: Adiabatic24
Add New 44, o 700
4 Atiakd Method / Model <« N -
ysis T t t
I Model-Free s Fn v " Ime 10 maximum rate -
4 Model Based X
s Fn + X Enthalpy 581,04 )9
Add New / Import Specific Heat 2,00 J/(g*K) £ 21 =500
Models Summary Phi 1,00 | dimensionl g $ —
2 g Q (]
4 Simulation TMR adiabatic 24,00 hours| ] & 1 H 400 3
4 Predictions . o e / o
Tl Temp. Initial -2,76 c I @
_— —d | )
Isothermal Lifetime _ g0 300 =
Dynamic Calculate S [ %
Multiple Step Show additionaffcurves ‘5 ad ] | <
Step Iso T 21-) -1 200 °
Modulated Isothermal SMPEIae progiam E { O
Modulated Dynamic o 24 100
Adiabatic O -2 J 1
Adiabatic24 L
Tmatic e e i oo | oy ¢ e e e S
Time Temperature Trans. 3 0
+ Optimizaion Get Result: |
Conversion Rate -4 -100
Conversion Values 5 10 15 20 25

Signal Rate (RCM)

-2.8°C for 24 hours

“The conversion occurs in hours at room temperature,
but the monomer can be stored for days at —20 °C”

Honicke, Dieter; Fodisch, Ringo; Claus, Peter; Olson, Michael. "Cyclopentadiene

Time / hour

Cyclopentadiene

* Can polymerise, but its main danger lies in its propensity to dimerise by the
Diels-Alder reaction. This reaction takes place at a temperature starting at 0-
40°C, under pressure. If the dimerisation is not controlled, the storage
equipments’ temperature and pressure rise very quickly, which leads to their
destruction. Storage temperatures of -80°C have been recommended.

i Legend

i -2,8 °C, ConversionRate
_ - -2,8 °C, Temp.

and Cyclopentene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim:
Wiley-VCH.

Book: Bernand Martel, Chemical Risk Analysis, 1988

kinetics.netzsch.com
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Methods for determination of TD24 by NETZSCH instruments NETZSCH

Methods for TD24

da

—=A4-f(a)-K(T)
/ \ dt

For known reaction type Single-curve

One ARC experiment

O\

Linear TMR Non-linear TMR
Data: ARC Data: ARC
Approximation: Approximation:
Zero-order reaction n-th order reaction

Unknown reaction type,

Multi-curve analysis Several reaction steps

Several experiments
Unknown reactions and steps

7N

Kinetics Neo Kinetics Neo

Data: DSC Data: ARC

kinetics.netzsch.com
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You can rely on NETZSCH. NETZSCH

Proven Excellence.

elena.moukhina@netzsch.com www.kinetics.netzsch.com
kinetics.neo@netzsch.com
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