Analyzing & Testing

Kinetic Methods for TD24 in Thermal Risk Assessment of Chemical Processes

Webinar Elena Moukhina 02/07/2023

Agenda

- Introduction. What is necessary to know and why?
- Definitions
 - 2.1. Characteristic temperatures of the process: Tp, MTSR, TMR, MTT
 - 2.2 Thermal Risk: primary and secondary reactions
 - 2.3 What is TD24? Why it is important?
- 3. Kinetic Methods of calculation TD24 offered by NETZSCH
 - 5.1. Theory and Examples
 - 5.2. Experimental data
 - 5.3. Kinetic Analysis
 - 5.3.1. Linear TMR Extrapolation
 - 5.3.2. Non-Linear TMR Extrapolation
 - 5.3.2. Advances kinetics by Kinetics Neo Software
- 4. Conclusion

1. Introduction. What is necessary to know and why?

Chemical industry with the thermal risk

- New materials,
- colors,
- Textiles
- Pharmaceuticals
- Nitration reactions
- Fine chemicals
- Manufacture
- Transportation
- Storage

Consecuences of thermal runaway

- Fire
- Explosion
- Economic loss
- Injuries and deathes

The core of risk assessment: Severity and probability

Risk Factors

- Physical properties :boiling, melting, ...
- Chemical properties: stability, ignition, sensitivity to light, air, water
- Toxicity: toxic and cancirogenic materials
- Ecotoxicity
- Fire and Explosion data: combustion, self-sustaining decomposition
- Chemical interactions: undesired reactions

Risk factors in Thermal process

- Thermal effects
 - Heat of reaction ———
 - Heat capacity –
 - Melting and evaporation enthalpy —
 - Adiabatic temperature rise
 - Dependence of reaction rate on temperature —
 - Heat removal: cooling
- Pressure effects
 - Gas release
 - Vapor pressure

Thermal Analysis

DSC,ARC

DSC

DSC

DSC, ARC

Kinetic analysis:

TMR approximation, Kinetics Neo

Risk assessment in runaway reactions

Assesment crirteria for severity of a runaway reaction

Simplified	Extended	ΔT_{ad} (K)	Order of magnitude of Q' kJ kg ⁻¹
High	Catastrophic	>400	>800
	Critical	200-400	400-800
Medium	Medium	50-100	100-400
Low	Negligible	<50 and no pressure	<100

Assesment crirteria for probability of a runaway reaction

Simplified	Extended	TMR _{ad} (h)
High	Frequent	<1
	Probable	1–8
Medium	Occasional	8–24
Low	Seldom	24–50
	Remote	50-100
	Almost impossible	>100

Francis Stoessel, Thermal Safety of Chemical Processes: Risk Assessment and Process Design. (Switzerland) (2008)

2. Definitions

- **Characteristic temperatures of the process:** Tp, MTSR, TMR, MTT
- **Primary and secondary reactions**
- What is TD24? Why it is important?

Normal process :

Heat: generation = removal + accumulation + loss

Temperature of reaction is under control

■ Thermal runaway :

Thermal Risk for cooling failure scenario: primary and secondary reactions

Time To Maximum Rate (TMR) and T_{D24}

 T_{D24} is the *temperature* at which *time to maximum reaction rate* is 24 HOURS.

Some common methods for thermal risk assessment

Why TD24 is important?

TD24 is calculated mostly for secondary/decomposition reaction, but sometimes also for synthesis reaction, depending on the sample type (raw material, or synthesis product) and reaction process.

3. Kinetic Methods of calculation TD24 offered by NETZSCH

- a) Linear TMR Extrapolation
- b) Non-Linear TMR Extrapolation
- c) Advances kinetics by Kinetics Neo Software

Methods for determination of TD24 by NETZSCH instruments

Approximation:

n-th order reaction

Approximation:

Zero-order reaction

Data: ARC

Data: DSC

ARC: Accelerating Reaction Calorimetry

Measurements for kinetic analysis: Accelerating Reaction Calorimetry

Temperature increase because of exothermal reaction

ARC data for decomposition of DTBP

Phi-factor in ARC instruments

Thermal inertia Φ

Only reactant

Heating of reactant only:

 $Q=m_{sample}Cp_{sample}\Delta T_{ideal}$

Reactant in container

Heating of reactant with container

$$Q=(m_{sample}Cp_{sample} + m_{bomb}Cp_{bomb}) \Delta T_{observed}$$

Formula for thermal inertia (Φ-factor) according to ASTM E1981:

$$\Phi = \frac{(m_s \cdot C_{p,s} + m_c \cdot C_{p,c})}{m_s \cdot C_{p,s}}$$

$$\Phi = 1 + \frac{m_c \cdot C_{p,c}}{m_c \cdot C_{p,c}}$$

 $m_c = mass of the container$ $C_{p,c} = heat capacity of the container$ $m_s = mass of the sample$ $C_{os} = heat capacity of the sample$

Measurements for kinetic analysis: Accelerating Reaction Calorimetry

Accelerating Reaction Calorimetry: temperature change is measured during self-heating

Degree of conversion α(t) for ARC data (extent of conversion, conversion, extent of reaction)

Commonly denoted by α and defined as the ratio of the partial to total change of a physical property.

ARC: Conversion is the ratio of the partial temperature increase at given time point to the total temperature increase at the final time point

Arrhenius Equation. Activation Energy. Kinetic Triplet

$$\frac{d\alpha}{dt} = A \cdot f(\alpha) \cdot K(T)$$

Arrhenius equation (1889) for reaction rate:

$$\frac{d\alpha}{dt} = A \cdot f(\alpha) \cdot exp(-Ea/RT)$$
Pre-exponential factor [1/s]

Reaction type: (nth order, autocatalysis, nucleation)

Activation energy [kJ/mol]

As temperature rises, the reaction rate increases exponentially!

R: gas constant 8.31 [J/(mol K)]

T: absolute temperature [K]

T[K]=T[°C]+273.15

Linear TMR extrapolation for decomposition

Heat balance:

$$Cp \cdot \Phi \cdot \frac{dT}{dt} = \Delta H \cdot A \cdot f(\alpha) \cdot Exp\left[\frac{-Ea}{RT}\right]$$
Linear approximation
Zero-order reaction
 $f(\alpha)=1$

$$\log(TMR) = \frac{Ea}{R} \frac{1}{T} + Const + \log \Phi$$

TMR in logarithmic scale

Linear TMR extrapolation for decomposition

Linear TMR extrapolation for decomposition

$$\log(TMR) = \frac{Ea}{R} \frac{1}{T} + Const + \log \Phi$$

NETZSCH Unique feature:

Non-Linear TMR extrapolation for decomposition

Measured curve for Φ_{1} has temperature step ΔT_{1} and the following equation

$$\left(\frac{dT_1}{dt}\right)_{\Phi_1} = \Delta T_1 \cdot A(\alpha_1) \cdot f(\alpha_1) \cdot exp\left(\frac{-E(\alpha_1)}{RT_1}\right)$$

We would like to recalculate to the new Φ_2 with temperature step ΔT_2 :

$$\left(\frac{dT_2}{dt}\right)_{\Phi_2} = \Delta T_2 \cdot A(\alpha_2) \cdot f(\alpha_2) \cdot exp\left(\frac{-E(\alpha_2)}{RT_2}\right)$$

Recalculation of the measured temperature curve at Φ_1 to Φ_2 at the same conversion value:

$$\left(\frac{dT_2}{dt}\right)_{\Phi_2} = \left(\frac{dT_1}{dt}\right)_{\Phi_1} \cdot \frac{\Phi_1}{\Phi_2} \cdot \exp\left(\frac{-E(\alpha)}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right)$$

Isoconversional method is used, where the points of the same conversion are taken into account.

Main assumption: activation energy is the same for whole process.

Reaction type and pre-exponent are not important for this isoconversional method.

This method ensures the accuracy for whole range and makes prediction possible.

Unique feature:

Non-Linear TMR extrapolation for decomposition

TMR(T) extrapolation: Linear vs. Non-linear algorithm

Linear TMR approximation:

- It's based on zero-order simplification which is only valid for low-conversion regions, so the line on high-conversion region makes no sense.
- Some minor items are discarded during mathematical deduction, so the result is not so accurate.

Non-linear TMR approximation:

- The assumption for activation energy: Ea is constant for the whole process.
- The assumption of process begin as the n-th order reaction is used only for obtaining Ea from the first few points.
- No simplification for reaction type, result is more accurate.

Accurate determination of TD24 by Kinetics Neo Software

Unknown reaction type,

Multi-curve analysis

Several reaction steps

Several experiments
Unknown reactions and steps

Kinetics Neo

Kinetics Neo

Data: DSC

Data: ARC

Steps to solve Kinetic Tasks in Kinetics Neo

kinetics.netzsch.com

Degree of conversion for kinetic analysis: Accelerating Reaction Calorimetry

How to change Φ ? For unknown reaction the ratio between reactant mass and container mass should be different Only for first-order reaction type the solution with solvent can be measured. Solvent increases thermal inertia

kinetics.netzsch.com

Adiabatic system with constant power input

Temperature increase because of exothermal reaction and constant power input

Kinetic analysis of temperature step

Reaction causes the step on temperature curve

Temperature rise with different concentrations of di-tert-butil peroxid (DTBP) in toluene

Acceleration rate calorimeter ARC 254 in VaryPhi mode with the constant underlying power 250mW.

One kinetic model for all three experiments

Simulation of adiabatic self-heating at different temperatures for Φ =1.0

Calculation of T_{D24} for Φ =1.0 and simulation of adiabatic self-heating at this temperature

DSC: Differential Scanning Calorimetry

Measurements for kinetic analysis: Differential scanning calorimetry

Differential scanning calorimetry: heat flow is measured during temperature

kinetics.netzsch.com 41

Conversion $\alpha(t)$ for DSC data

$$\alpha(t) = \frac{\Delta H(t)}{\Delta H_{total}}$$

DSC: Conversion is the ratio of the partial enthalpy change at given time point to the total enthalpy change at the final time point

Reaction types: Decomposition

Arrhenius equation

$$\frac{d\alpha}{dt} = A \cdot f(\alpha) \cdot exp\left(\frac{-E_A}{RT}\right)$$

Reaction of n-th order is typical for decomposition

Fn
$$\frac{d\alpha}{dt} = A \cdot \underbrace{(1-\alpha)^n} \exp\left(\frac{-E_a}{RT}\right)$$

Reaction types: reactions with autocatalysis

Chemical process is **generally** described by Arrhenius equation:

$$\frac{d\alpha}{dt} = A \cdot f(\alpha) \cdot exp\left(\frac{-E_A}{RT}\right)$$

$$\frac{d\alpha}{dt} = A \cdot (1 - \alpha)^n \cdot \exp\left(\frac{-E_a}{RT}\right) \cdot \alpha^m$$

Curing can be described by the equation **Kamal-Sourour** for autocatalytic reaction:

$$\frac{d\alpha}{dt} = A \cdot (1 - \alpha)^n \cdot \exp\left(\frac{-E_{a1}}{RT}\right) + A \cdot K \cdot (1 - \alpha)^n \cdot \alpha^m \cdot \exp\left(\frac{-E_{a2}}{RT}\right)$$
n-th order
autocatalysis

Cyclopentadiene: What is the initial temperature for TMR=24 hours for Phi=1.0?

"The conversion occurs in hours at room temperature, but the monomer can be stored for days at −20 °C"

Cyclopentadiene

 Can polymerise, but its main danger lies in its propensity to dimerise by the Diels-Alder reaction. This reaction takes place at a temperature starting at 0-40°C, under pressure. If the dimerisation is not controlled, the storage equipments' temperature and pressure rise very quickly, which leads to their destruction. Storage temperatures of -80°C have been recommended.

Book: Bernand Martel, Chemical Risk Analysis, 1988

Methods for determination of TD24 by NETZSCH instruments

n-th order reaction

Zero-order reaction

You can rely on NETZSCH.

elena.moukhina@netzsch.com

www.kinetics.netzsch.com kinetics.neo@netzsch.com