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Agenda
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1. Reactions depending on additional parameter

2. Pressure-dependent reactions

1. Partial Pressure of Gaseous Reactant like Hydrogen for Metal Oxides.

2. Reversible Reactions with Gaseous Reactant in Reverse Reaction 

3. Pressure-Dependent Reactions in Inert Gas

3. Thermosets, composites, photopolymers:  

1. Curing kinetics depending on intensity of UV light 

2. Curing reactions with diffusion control (DEA, Rheology)

4. Flexible Data Evaluation

1. Evaluation of Arbitrary Data

2. Kinetics for Incomplete Data

3. New Reaction Types

5. User Interface (UI) is reworked for native look in Windows 11
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1. Dependence on the additional parameter

Examples of the additional external parameter:

• Partial Pressure of Gaseous Reactant

• Reversible Reactions with Gaseous Reactant in 

Reverse Reaction

• Pressure-Dependent Reactions in Inert Gas

• Intensity of UV light for curing of photopolymers

• Other parameters
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The rate of chemical reactions and crystallization depends on different parameters, the first of them is temperature.

Now we have the possibility to use the second parameter in the common kinetic model, where reaction rate depends on two parameters.
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Pressure-Dependent Reactions

2.1 Partial Pressure of Gaseous Reactant
2.2 Reversible Reactions with Gaseous Reactant
2.3 Pressure-Dependent Reactions in Inert Gas
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2.1
Partial Pressure of Gaseous Reactant 

Reduction of Metal Oxide in H2
total pressure of gas mixture is 1 bar
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Reduction of metal from metal oxide 

in Nitrogen with partial pressure of Hydrogen
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Nitrogen with Hydrogen

𝑀𝑒𝑂2 + 𝐻2 → 𝑀𝑒 + 𝐻2𝑂

𝑑𝛼

𝑑𝑡
= 𝑃𝐻2

𝑛𝑝  𝐴 𝑒𝑥𝑝
−𝐸𝐴

𝑅𝑇
𝑓 α

Hydrogen is the reactive gas.

Reaction rate depends on the hydrogen concentration

the higher partial pressure of hydrogen - the higher reaction rate

STA 509 with Hydrogen Generator
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Data series for analysis
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20K/min, different partial pressure of H2 Isothermal T=600°C, different partial pressure of H2

PH2=100%

PH2=33%

PH2=67%

PH2=100%

PH2=33%

PH2=67%
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Common model in Kinetics Neo 

depending on the partial pressure of gaseous reactant
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Verification: Predictions for 100% H2, different heating rates
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20K/min

5K/min

10K/min

Simulations for 100% of H2 Experiment

20K/min

5K/min

10K/min
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Verification of kinetic model: 

comparison of simulated and measured data
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PH2=100%, 20K/min

PH2=100%, 5K/min

PH2=100%, 10K/min

Sim,5K/min,P=1

Sim,10K/min,P=1

Sim,20K/min,P=1
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2.2
Reversible reactions with Gaseous Reactant 

Decomposition of CaCO3 under partial pressure of CO2    
total pressure of gas mixture is 1 bar
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Reversible Reactions

Reversible reactions
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A ⇄ B

A → B

A ← B

Forward:

Reverse:

Rection rate total = Reaction rate forward – Reaction rate reverse

𝐴1 𝑒𝑥𝑝
−𝐸1

𝑅𝑇
𝑓1 α

𝐴2 𝑒𝑥𝑝
−𝐸2

𝑅𝑇
𝑓2 α

𝑑𝛼

𝑑𝑡
= 𝐴1 𝑒𝑥𝑝

−𝐸1

𝑅𝑇
𝑓1 α − 𝐴2𝑒𝑥𝑝

−𝐸2

𝑅𝑇
𝑓2 α
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Decomposition of CaCO3 in Nitrogen

1. Nitrogen only

13

𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2

𝑑𝛼

𝑑𝑡
= 𝐴 𝑒𝑥𝑝

−𝐸𝐴

𝑅𝑇
𝑓 α
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Decomposition of CaCO3 in Nitrogen, Pressure=1bar
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𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2
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Decomposition of CaCO3 in Nitrogen with CO2

1. Nitrogen only (only forward reaction)
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𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2

𝑑𝛼

𝑑𝑡
= 𝐴 𝑒𝑥𝑝

−𝐸𝐴

𝑅𝑇
𝑓 α

2. Nitrogen with CO2 (reaction is reversible, P is partial pressure of CO2)

𝐶𝑎𝐶𝑂3 ⇄ 𝐶𝑎𝑂 + 𝐶𝑂2

𝑑𝛼

𝑑𝑡
= 𝐴1 𝑒𝑥𝑝

−𝐸1

𝑅𝑇
𝑓1 α − 𝑃𝑛𝐴2𝑒𝑥𝑝

−𝐸2

𝑅𝑇
𝑓2 α

CO2 is the reactive gas for reverse reaction

The rate of reverse reaction depends on the CO2 concentration

The higher partial pressure of CO2 - the higher rate of reverse reaction

and therefore, the total decomposition is later
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Common kinetic model for decomposition of CaCO3

in Nitrogen with partial pressure CO2 (total Pressure=1 bar)
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𝐶𝑎𝐶𝑂3 ⇄ 𝐶𝑎𝑂 + 𝐶𝑂2

PCO2=0

PCO2=10% PCO2=30%
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2.3
Pressure-Dependent Reactions in Inert Gas

Decomposition of CaOx*H2O under high pressure of N2
total pressure of N2 is from 1 to 50 bar
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CaOx*H2O at different heating rates and different pressure of N2
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normal pressure 1 bar, 

different heating rates

Evolved: H2O

Evolved: CO

Evolved: CO2

Evolved: H2O

Evolved: CO

PN2=5 bar

PN2=20 bar

PN2=50 bar

PN2=10 bar

Heating rate 20K/min, 

different pressures of N2

Evolved: CO2
5K/min

2K/min

10K/min

20K/min

kinetics.netzsch.com



Decomposition of CaC2O4*H2O in Nitrogen under high pressure
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Nitrogen, High Pressure

𝐶𝑎𝐶2𝑂4 ∗ 𝐻2𝑂 ⇄ 𝐶𝑎𝐶2𝑂4 + 𝐻2𝑂

𝐶𝑎𝐶2𝑂4 → 𝐶𝑎𝐶𝑂3 +𝐶𝑂
𝐶𝑎𝐶𝑂3 ⇄ 𝐶𝑎𝑂 + 𝐶𝑂2

N2 is the inert gas. It has no influence on the forward reactions for all steps. 

It has no influence on the second step, because the second step is non-reversible reaction.

For high pressure of N2 the diffusion coefficient is lower and the products (H2O for the first step and CO2 for the third step) can 

not be removed fast from reaction zone. 

Then for high pressure the reverse reaction is faster, and the total decomposition is later.
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Decomposition of CaCO3 in Nitrogen with CO2

Step 1: reaction is reversible, prefix F: forward reaction, B: reverse reaction, P is pressure of N2

20

𝐶𝑎𝐶2𝑂4 ∗ 𝐻2𝑂 ⇄ 𝐶𝑎𝐶2𝑂4 + 𝐻2𝑂

Step 2: only forward reaction

𝐶𝑎𝐶2𝑂4 → 𝐶𝑎𝐶𝑂3 + 𝐶𝑂
𝑑𝛼

𝑑𝑡
= 𝐴2 𝑒𝑥𝑝

−𝐸2

𝑅𝑇
𝑓2 α

Step 3: reaction is reversible, prefix F: forward reaction, B: reverse reaction, P is pressure of N2

𝐶𝑎𝐶𝑂3 ⇄ 𝐶𝑎𝑂 + 𝐶𝑂2

𝑑𝛼

𝑑𝑡
= 𝐴3𝐹 𝑒𝑥𝑝

−𝐸3𝐹

𝑅𝑇
𝑓3𝐹 α − 𝐴3𝐵𝑒𝑥𝑝

−𝐸3𝐵

𝑅𝑇
𝑓3𝐵 α

𝑑𝛼

𝑑𝑡
= 𝐴1𝐹 𝑒𝑥𝑝

−𝐸1𝐹

𝑅𝑇
𝑓1𝐹 α − 𝐴1𝐵𝑒𝑥𝑝

−𝐸1𝐵

𝑅𝑇
𝑓1𝐵 α = 𝑃𝑛1𝐴1𝑒𝑥𝑝

−𝐸1

𝑅𝑇
𝑓1 α  

= 𝑃𝑛3𝐴3𝑒𝑥𝑝
−𝐸3

𝑅𝑇
𝑓3 α  
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Common kinetic model for decomposition of CaC2O4*H2O  in Nitrogen, 

different pressures from 1 bar to 50 bar, different heating rates: see legend

21Optimal parameters for pressure:  n1= - 0.75, n3= - 0.73 



3
Thermosets, composites, photopolymers

3.1 UV intensity for DSC, DEA
3.2  Diffusion control for DEA, Rheology
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3.1 Curing depending on intensity of UV light 
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UV curing at different temperatures and different intensities (10kHz)

24Data: https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353 

Isothermal DEA measurements at 30°C, 90°C, 150°C
for light exposure at 75mW/cm2

Temperatures 
for 75mW/cm2

• 30°C
• 90°C 
• 150°C 

Isothermal DEA measurements at 30°C for light exposure 
at different intensities from 75mW/cm2 to 150mW/cm2

UV Intensities at 30°C
• 36 mW/cm2

• 75 mW/cm2

• 150 mW/cm2

• 300 mW/cm2

https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353


Common model in Kinetics Neo 

depending on both temperature and the intensity of UV light

25Data: https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353 

Temperatures
• 30°C
• 90°C 
• 150°C 

UV Intensities
• 36mW/cm2

• 75mW/cm2

• 150mW/cm2

• 300mW/cm2

https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pen.26353


3.2 Diffusion control for DEA, Rheology
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Diffusion control for new data: DEA, Rheology

Reactions of curing and cross-linking near glass transition temperature are diffusion controlled
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Amorphous material (Polymer)

Glassy

state

Rubbery or liquid

state

Glass transition

Slow curing

T<Tg 

Fast curing

T>Tg

Tg

28

Reaction

starts

Reaction

finished
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Kinetic analysis of DEA data for curing with diffusion control
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Kinetics on DEA Data for epoxy curing with diffusion control
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4
Flexible Data Evaluation

4.1 Evaluation of arbitrary data
4.2 Kinetics for incomplete data
4.3 New reaction types
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4.1
Evaluation of Arbitrary Data

• Differential data
• Integral data
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Arbitrary data
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Arbitrary differential data

Usage:

• DTA (differential thermal analysis)

• MS (mass-spectrometry)

• Other differential data, 
containing the reaction peak like DSC
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Arbitrary Integral Data

35

Usage:

• Measured concentrations 

• Conversion 

• Storage modulus 

• Absorbance

• Other integral data 
containing reaction step like TG
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4.2 Kinetics for Incomplete Data
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Incomplete Measured Data: Final Part of Reaction Is not Present

37

Complete

Incomplete
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Incomplete Measured Data

38

Set total thermal effect

for each measured curve

Total thermal effect:

• Mass loss (TG)

• Peak area (DSC)

• Length change (DIL)

• Signal change (DEA, Rheometry)

kinetics.netzsch.com



Incomplete Measured Data: Final Part of Reaction Is not Present
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Model Based Analysis for Incomplete Data
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NEW: Model-Free Analysis for Incomplete Measured Data

41

Numerical model-free method
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4.3
New Reaction Types

• Reversible reactions
• Reaction of n-th order with diffusion
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Reversible Reactions of n-th order

43

A ⇄ B

A → B

A ← B

Forward:

Reverse:

Rection rate total = Reaction rate forward – Reaction rate reverse

𝐴1 𝑒𝑥𝑝
−𝐸1

𝑅𝑇
𝑓1 α

𝐴2 𝑒𝑥𝑝
−𝐸2

𝑅𝑇
𝑓2 α

𝑑𝛼

𝑑𝑡
= 𝐴1 𝑒𝑥𝑝

−𝐸1

𝑅𝑇
𝑓1 α − 𝐴2𝑒𝑥𝑝

−𝐸2

𝑅𝑇
𝑓2 α

NEW: FnR
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Reaction of n-th order with diffusion

https://doi.org/10.1016/S0040-6031(03)00222-3  

44

D3:Jander

3-dimensional diffusion in the literature

1.5 * (1-α)2/3 /  (1 – (1- α )1/3) 

D4:Ginstling-Brounstein 1.5 * (1- α)1/3 /  (1 – (1- α )1/3) 

Zhuravlev-Lasokin-Tempelman 1.5 * (1- α)5/3 /  (1 – (1- α )1/3) 

1.5 * (1- α)n /  (1 – (1- α )1/3) General equation:

1-dimensional diffusion

D1: 0.5  / α

0.5  / α * (1- α)nNEW DFn:

kinetics.netzsch.com
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Reaction of n-th order with one-dimensional diffusion for decomposition

Fn NEW: DFn

45

New reaction type DFn for the first-dimensional diffusion with n-th order. 
DFn reaction type considers diffusion process in the material during decomposition. 
It adds the diffusion mechanism to the classical reaction of n-th order (Fn).
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5
User Interface (UI) is reworked 

for native look in Windows 11

New colorful themes
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New Colorful Themes
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Subscription Support Provides Updates for Free
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Agenda
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1. Reactions depending on additional parameter

2. Pressure-dependent reactions

1. Partial Pressure of Gaseous Reactant like Hydrogen for Metal Oxides.

2. Reversible Reactions with Gaseous Reactant in Reverse Reaction 

3. Pressure-Dependent Reactions in Inert Gas

3. Thermosets, composites, photopolymers:  

1. Curing kinetics depending on intensity of UV light 

2. Curing reactions with diffusion control (DEA, Rheology)

4. Flexible Data Evaluation

1. Evaluation of Arbitrary Data

2. Kinetics for Incomplete Data

3. New Reaction Types

5. User Interface (UI) is reworked for native look in Windows 11
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You can rely on NETZSCH.
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kinetics.neo@netzsch.com kinetics.netzsch.com

termica.netzsch.com 

http://www.kinetics.netzsch.com/
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