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Selb in Germany – City of Porcelain
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Problem: Find optimal temperature program to get the best quality

• Measurements

• Shrinkage Dilatometry

• Phase transitions Differential scanning calorimetry

• Mass loss Thermogravimetry

• Analysis Kinetics Neo software

how effects depend on the sintering conditions

• Kinetics modelling Kinetics Neo software

• Create the model to describe the sintering 

• Predictions of sintering Kinetics Neo software

• Using kinetic model from kinetic modelling

• Optimizations of sintering processes Kinetics Neo software

• Using kinetic model from kinetic modelling
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NETZSCH Analysing and Testing

Dilatometry – length change during sintering measurement

DIL 402 Expedis Classic

specifically dedicated 

to ceramic measurements

up to 1600 - 2800 °C



5Sintering 2017, San Diego |  Kinetic modelling and optimization of sintering |  11/13/2017 kinetics.netzsch.com

Porcelain green body: DILatometry

Created with NETZSCH Proteus software
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DIL measurement on a porcelain green body, 10.01 mm, 10 K/min, air atmosphere

• 546°C loss of chemically bound water 

from kaolinite (dihydroxylation)

546.8 °C

• 577°С quartz transition 

577.9 °C • 998°C structural collapse of the 

metakaolinite and the formation of a γ-

Al2O3 type spinel phase

998.6 °C
• 1150°C -1200°C SiO2 to the primary 

(2:1) mullite at about the formation of the 

secondary (3:2) mullite

1155 °C
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STA 449 F1 Jupiter

Differential scanning calorimetry  – phase transitions and reactions 

Thermogravimetry: mass loss

STA 44 F1 Jupiter

dedicated to high-temperature 

measurements

up to 1650-2000 °C
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Created with NETZSCH Proteus software
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Measured effects: DSC and TG

Comparison between DIL and STA results during heating to 1230°C;10 K/min, air atmosphere

• 533°C loss of chemically bound water 

from kaolinite 

• 577°С quartz transition 

• 1150°C -1200°C SiO2 to the primary 

(2:1) mullite at about the formation of the 

secondary (3:2) mullite

• 996°C structural collapse of the 

metakaolinite and the formation of a γ-

Al2O3 type spinel phase

• 123°C loss of surface water

123 °C
273 °C

• 273°C Binder combustion

533 °C

534 °C

996 °C

577 °C
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DIL Measurement: Porcelain sintering process
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DIL Measurement: Porcelain sintering process
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Main task:

1.Create one kinetic model which can describe the 

experimental data for different temperature conditions 

2.Use this kinetic model for prediction of reaction progress at 

the different temperature program.

3.Use this kinetic model for the process optimization
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Porcelain sintering process

DIL Measurement and kinetic model
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Porcelain sintering process

Conversion rate and kinetic model
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Example:

Prediction of length for user’s temperature program

temperature

Length
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Example:

Temperature optimization for constant sintering rate

temperature

Length
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What makes Kinetics Neo so Valuable

• Based on the latest technologies, contains improved fast and easy user interface.

• All model-free and model-based methods are included. 

The results from all of these methods can be statistically compared with one another.

• The powerful new numerical model-free method ensures fast determination of the best model-

free solution.

• A visual kinetic model can be created quickly and easily using the model-based method.

• The kinetic model can contain any number of individual reaction steps in any combination. 

Reaction steps can be easily added, removed or changed by the user.

• The software provides the formal concentration of each reactant and reaction rate for each 

reaction step as a function of time or temperature.

• Predictions and optimizations can be achieved by means of both model-free and model-based 

methods. 


