

Leading Thermal Analysis -

Kinetic modelling and optimization of firing process of foam ceramics

Elena Moukhina NATAS 2018 08/07/2018

Production: sintering of ceramics

Quality of ceramics depends on the firing temperatures and time How to improve the quality of product and reduce the production time?

Desired result at unknown production temperature

Photo https://precision-ceramics.com/products/custom-ceramic-parts-components-2/

E.Moukhina | Kinetic modelling of firing | NATAS 08/07/2018

Source: www.mainpost.de

Source: www.physik.uni-halle.de

- Cracks and deformation during sintering of bigger parts
- No exact imagination of the binder-burnout espacially at bigger parts

MAIN PROBLEM: Long firingprogram made the production in larger scale uneconomical

Optimization of debinding, sintering

How to improve the quality of product and reduce the production time?

KINETICS Neo (+ NETZSCH instruments)

kinetics.netzsch.com

- 1. Experimental data TGA, DIL
- 2. Kinetics Analysis based on experimental data Create kinetic model based on experimental data
- 3. Validation of kinetics Model Is the simulation in agreement with any existing isothermal data for this process?
- 4. Prediction or process optimization

Instrument is necessary

Kinetics Neo

Kinetics Neo

Production processes: How it works?

Short theory: Analysis of experimental data

• T: temperature

• f(a,b): reaction type

Analysis: to find **kinetic model** (Ea , A, f(a,b)) from experimental data

Production processes. How it works?

Short theory: Simulation for given temperature

Analysis: Kinetics model Ea , A, f(a,b) is found from experimental data Simulation: to calculate da/dt, a,b, Tg for user's defined temperature T(t)

Optimization. How it works?

Short theory: Optimization of the process

• T: temperature

• f(a,b): reaction type

Analysis: Kinetics model Ea, A, f(a,b) is found from experimental data

Optimization: to find T(t) for user's defined reaction rate da/dt

Sintering optimization

Two processec during firing: debinding and sintering

A Thermobalance gives you information about the binder burnout!

A Dilatometer gives you information about the sintering shrinkage and thermal expansion!

E.Moukhina | Kinetic modelling of firing | NATAS 08/07/2018

Debinding: Optimization based on STA data

Example of measured data for debinding

Original temperature program: Bad quality and long time Optimized temperature program: Improved quality and short time

NETZSCH

Example of sintering process: DIL Data and kinetic model **NETZSCH**

Optimization of ceramics firing. How it works?

Temperature optimization for constant sintering rate

HALFOAM ALUMINA ™

by

We allow to tell story about the optimization of production process

Production time was reduced more than by 50%

Additional information is on *kinetics.netzsch.com*